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Image de fond : portrait de Johannes Kepler (27 
décembre 1571 - 15 novembre 1630) dont les lois 
font l’objet du dossier de ce numéro (copie de 
l’original de 1610 conservé au monastère bénédictin 
de Krems).
À gauche en surimpression, on peut voir trois dessins 
de Kepler extraits de Astronomia nova où il énonce 
ses deux premières lois (images Gallica / BnF).
Image du centre : reconstitution de l’orbite de 
la Terre, positionnée tous les 687 jours (année 
martienne). 
Image du bas : différence entre orbite elliptique et 
circulaire.
Tout en bas, la 3e loi de Kepler en écriture moderne.
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Éditorial Sommaire
Le 25 décembre 2021 à 13 h 20 (heure de Paris) 
une fusée Ariane 5 décollait du centre spatial de 
Kourou emportant dans sa coiffe le télescope 
spatial JWST. Depuis lors ce télescope est arrivé, 
le 24 janvier 2022, à sa destination finale le point 
de Lagrange L2, un point d’équilibre, situé à 1,5 
million de kilomètres de la Terre, où il reste en 
permanence dans l’alignement du Soleil et de la 
Terre.
Vous trouverez également d’autres actualités 
astronomiques en consultant la rubrique : En direct 
des observatoires et autres nouvelles.
Deux jours plus tard le 27 décembre 2021, nous 
pouvions fêter le 450e anniversaire de la naissance de 
Johannes Kepler (1571 – 1630), à 2 h 30 de l’après-
midi selon l’horoscope qu’il a lui-même établi (1). 
Ce grand scientifique avait certes une mauvaise 
vue, un handicap sérieux pour un astronome, mais 
ce fut un des plus grands mathématiciens. À la 
mort de Tycho Brahé en 1601 il devint à son tour 
le « mathematicus » de l’empereur Rodolphe II. 
Dans l’histoire de l’astronomie il occupe une place 
charnière entre la conception de Ptolémée, celle de 
Copernic et le siècle des Lumières. Ses découvertes 
révolutionnaires ont ouvert la voie à Isaac Newton 
(1643 – 1727). Les trois lois qui portent son nom 
restent d’actualité. Par exemple, avec la 3e loi de 
Kepler, vous pouvez avec vos élèves déterminer 
la masse de Jupiter, la plus grosse planète du 
Système solaire ou même la masse du trou noir 
supermassif qui se trouve au centre de notre 
Galaxie. L’élaboration de cette troisième loi fait 
l’objet d’un des articles dans lequel on peut noter 
que Kepler utilisa les logarithmes qui venaient tout 
juste d’être découverts par John Napier en 1614.
À partir de l’équation établie par Kepler il est 
possible de déterminer la position d’une planète 
à un instant quelconque, équation que l’on peut 
utiliser dans des simulations informatiques.
La richesse du sujet nous amènera à y revenir dans 
prochain numéro.

Christian Larcher pour l’équipe

(1) D’après Arthur Koestler Les somnambules ; Les 
Belles Lettres 2010. (p. 221 ; 238 ; 416).
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EN DIRECT DES OBSERVATOIRES 
ET AUTRES NOUVELLES

Frédéric Pitout, IRAP Toulouse

Des planètes errantes repérées

Une étude menée par le Laboratoire d’astrophysique 
de Bordeaux, et publiée dans la revue Nature révèle 

la découverte de plus de 70 planètes dites « errantes ». Ces 
planètes ne sont pas ou plus liées gravitationnellement 
à une étoile et voguent dans l’espace intersidéral. En 
extrapolant à toute la Galaxie ce nombre de planètes 
errantes trouvées dans une petite partie du ciel, les auteurs 
estiment que plusieurs milliards de ces vagabondes 
existent. De quoi remettre en question la formation des 
planètes ou leur évolution. Deux hypothèses s’affrontent : 
soit ces planètes errantes ont été formées à partir de 
l’effondrement d’une masse de gaz et de poussières trop 
peu massive pour donner naissance à une étoile, soit elles 
ont été arrachées à l’attraction gravitationnelle de leur 
étoile et éjectées de leur système planétaire.

https://astrophy.u-bordeaux.fr/?p=4173

Le champ magnétique d’une 
exoplanète détecté

La détection et la caractérisation des planètes extrasolaires 
constituent un domaine particulièrement actif de 
l’astrophysique actuelle. Alors que les méthodes de 
détection classiques, vélocimétrie et transit photométrique, 
nous donnent une estimation de la masse et de la taille 
des exoplanètes, il faut redoubler d’ingéniosité pour 
accéder à des paramètres comme le champ magnétique. 
C’est ce qu’a fait une équipe internationale menée par 
l’Institut d’astrophysique de Paris (IAP). En observant un 
transit de HAT-P-11b (une exoplanète de type Neptune) 
avec le télescope spatial Hubble, elle a pu étudier une 
raie de carbone ionisé une fois (C+ ou CII en notation 
spectroscopique) et comparer leurs données à des modèles 

de magnétosphère. Ils sont arrivés à la conclusion que 
l’exoplanète avait un champ magnétique à sa surface 
d’intensité de l’ordre de 1 à 5 10-4 T (soit environ 100 fois 
plus élevé qu’à la surface de la Terre). 

https://www.insu.cnrs.fr/fr/cnrsinfo/hubble-detecte-
la-magnetosphere-et-le-champ-magnetique-dune-
exoplanete

Des étoiles à la métallicité très faible 
observées dans la Voie lactée

La métallicité est définie comme la proportion en masse 
de tous les « métaux », c’est-à-dire les atomes autres que 
l’hydrogène et l’hélium. Les étoiles se formant à partir des 
éléments de plus en plus riches en « métaux », formés dans 
les étoiles plus anciennes, elles possèdent une métallicité 
de plus en plus grande de génération en génération. 
Une équipe internationale, menée par l’observatoire de 
Strasbourg, a publié des résultats d’observation d’un 
« courant d’étoiles », nommé C-19, dans notre Galaxie et 
dont les étoiles ont une métallicité extrêmement faible, de 
l’ordre de 2 500 fois plus faible que celle du Soleil. 
Cette étude s’appuie sur l’exploitation conjointe de données 
du satellite d’astrométrie Gaia et du télescope Canada-
France-Hawaii. Ces étoiles se sont vraisemblablement 
formées dans une petite galaxie très jeune qui a perdu et 
égrainé des étoiles lors de son interaction avec la nôtre. 
L’étude de ces étoiles très peu métalliques pourra nous 
renseigner sur la formation des premières étoiles et des 
premiers amas stellaires.

https://astro.unistra.fr/fr/2022/01/05/la-structure-
stellaire-la-plus-sous-metallique-de-lunivers/

ACTUALITÉS
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Le Cnes a 60 ans

Le texte de loi fondateur du Centre national d’études 
spatiales (CNES), l’agence spatiale française, a été signé 
le 19 décembre 1961 par Charles de Gaulle pour doter 

la France de compétences dans le domaine du spatial. 
Le CNES démarre effectivement ses activités le 1er mars 
1962. Cet organisme a pu voir le jour grâce à la ténacité 
de scientifiques comme Henri Moureu ou Pierre Auger et 
à des hommes politiques tel Michel Debré. Aujourd’hui, 
le CNES est incontournable en France pour tout ce qui 
touche aux activités spatiales, dont l’astronomie.

https://www.franceculture.fr/emissions/la-methode-
scientifique/cnes-qui-fete-son-anniversaire

https://cnes.fr/fr/cnesmag-90-60-ans-pour-le-futur

Actes du 1er colloque AstroEdu-FR

Comme annoncé dans le numéro précédent des Cahiers 
Clairaut, les actes du colloque Astronomie pour 
l’éducation dans l’espace francophone (AstroEdu-
FR), qui s’est tenu virtuellement en janvier 2021, sont 
disponibles sur l’archive ouverte HAL : 
https://hal.archives-ouvertes.fr/hal-03481844/
Une version imprimée est publiée par les éditions le 
Manuscrit dans une nouvelle collection Astronomie pour 
l’éducation dirigée par Emmanuel Rollinde, professeur 
de didactique des sciences à l’université de Cergy.

https://lemanuscrit.fr/collections/astronomie-pour-
leducation

Fig.1. Le courant d’étoiles de faible métallicité C-19 dans la Galaxie. D’autres amas sont placés à titre de comparaison. Le code couleur 
indique la métallicité moyenne des amas. (Image : Nicolas Martin/Obs. de Strasbourg).

Fig.2. Affiche néo-rétro conçue à l’occasion du 60e 
anniversaire du Cnes (image : Cnes).
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La méthode scientifique 
« Enseignement des sciences : 
trouver la bonne formule »

À l’occasion de la journée internationale de l’éducation, 
le 24 janvier 2022, l’excellente émission radiophonique 
La méthode scientifique sur France Culture portait sur 

l’enseignement des sciences. Le programme comporte 
des échanges avec Elena Pasquinelli, philosophe des 
sciences cognitives et membre du Conseil scientifique 
de l’Éducation nationale, et Ange Ansour, directrice 
du dispositif éducatif Les Savanturiers - École de la 
recherche du Centre de recherche et d’interdisciplinarité. 
Un entretien avec Cécile de Hosson, professeure en 
didactique de la physique, est aussi proposé. On peut 
réécouter à l’envi l’émission sur le site de France Culture. 

https://www.franceculture.fr/emissions/la-methode-
scientifique/enseignement-des-sciences-trouver-la-
bonne-formule

4th Symposium on Space 
Educational Activities

L’Agence spatiale européenne et l’université 
polytechnique de Catalogne (Barcelona Tech) organisent 
le 4e symposium sur les activités éducatives spatiales du 
27 au 29 avril 2022 à Barcelone. Les trois matinées seront 
consacrées à des présentations d’initiatives, d’opérations 
ou de ressources pédagogiques tandis que les après-midis 
seront plus pratiques avec des ateliers, des démonstrations 
en planétarium, des stands, etc. Les inscriptions (dont les 
frais ne sont pas donnés…) sont ouvertes. Le CLEA avait 
soumis une proposition de communication, portée par 
Frédéric Pitout et Floriane Michel, qui a été refusée. Mais 
ne soyons pas mauvais joueurs  : nous pouvons tout de 
même en parler dans ces pages. Et tant pis pour eux…

https://sseasymposium.org/

n

Fig.3. Première de couverture des actes du colloque AstroEdu-FR.

Fig.4. Logo du 4e symposium sur les activités éducatives spatiales.
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LE TÉLESCOPE SPATIAL JAMES WEBB 
Patrice Bouchet, Directeur de recherche au Département d’astrophysique du CEA-

Saclay, chef de projet du Centre d’expertise JWST/MIRI

Après de nombreux déboires et des reports successifs le JWST est enfin parti dans les meilleures conditions. 
Ce nouveau télescope est porteur de beaucoup d’espoirs pour détecter les premières lueurs de l’Univers, la 

nucléosynthèse des premiers éléments lourds, la formation des étoiles et des galaxies...  
Ce dispositif est susceptible d’enrichir profondément notre connaissance de l’Univers.

Hubble, et après ? 

Après plus de 30 ans la mission qui avait été impartie 
au télescope spatial Hubble (HST) pour scruter 

l’Univers proche a été accomplie summa cum laude1. À 
tel point que la NASA a finalement décidé de lui redonner 
une nouvelle jeunesse. En effet, le 17 juillet 2021, après 
que l’ordinateur de bord a connu un problème (le 13 
juin 2021), les instruments scientifiques du télescope 
ont pu être remis en service, et la collecte de données 
scientifiques a repris immédiatement. 

Pour tous les scientifiques et les amateurs, Hubble est 
une icône qui leur a donné un aperçu incroyable du 
cosmos. Mais non seulement les télescopes vieillissent, 
à mesure que leurs utilisations nous aident à amplifier 
nos connaissances, mais celles-ci suscitent en nous de 
nouvelles interrogations, auxquelles ils ne peuvent pas 
toujours répondre, faute d’avoir été conçus pour ce faire.

Si l'on plaçait les objets de l'Univers local, vus par Hubble 
en lumière ultraviolette et visible, à des distances dites 
cosmologiques, ils ne seraient visibles que dans la lumière 
émise à des longueurs d’onde qui correspondent au rouge 
lointain et à l'infrarouge. Voir plus loin dans l'Univers 
cela ne consiste pas seulement à utiliser un télescope 
plus puissant : il faut prendre en compte l'expansion de 
l'Univers, qui décale le spectre des objets lointains vers le 
rouge. De plus, pour étudier les mécanismes de formation 
des étoiles et de leurs planètes, il faut « transpercer » les 
poussières, ce qui ne peut se faire qu'en observant dans 
l'infrarouge. Par conséquent, le nouveau télescope spatial 
ne devait pas être seulement un « Super-HST », mais il 
devait aussi être spécialement adapté pour « voir » de tels 
rayonnements.

1   « avec la plus haute louange », la plus haute distinction de diplôme 
utilisée en particulier aux États-Unis (NDLR).

Un peu d’histoire

En 1989, Riccardo Giacconi, directeur du STScI (« Space 
Telescope Science Institute »), le centre des opérations du 
HST situé à Baltimore, et futur prix Nobel de physique 
(2002), prépara l’après-HST, qui était alors prévu pour 
2005 (!). 
Plusieurs projets de télescopes de 4 m furent alors 
proposés, mais, en 1995, le directeur de la NASA, 
Dan Goldin, mettait la communauté astronomique en 
instance de penser « Plus vite, Meilleur et Moins Cher » 
(le fameux «  Faster, Better, Cheaper  »), et demandait 
un projet de télescope de 8 m à un coût inférieur à celui 
des télescopes précédents. C'est ainsi que, dès l'année 
suivante, plusieurs études envisageaient la réalisation de 
miroirs de 8 m qui pourraient se déployer dans l'espace, 
pour la modeste somme d'environ 500 millions de 
dollars. Ce télescope encore dans les limbes fut dès lors 
baptisé sous le nom de NGST (pour « New Generation 
Space Telescope »). Hélas, les estimations budgétaires 
excédaient de plusieurs centaines de millions de dollars 
la somme qui pouvait être raisonnablement envisagée, 
et le miroir du NGST dut être réduit à un diamètre de 
6,5 m en 2001. 

En septembre 2002, le NGST reçut le nom de Télescope 
Spatial James Webb (du nom de l’administrateur de la 
NASA en charge du programme Apollo). Ceci fut rendu 
nécessaire après que la construction du télescope a été 
confiée au groupe industriel Northrop Grumman Space 
Technologies dont le sigle était… NGST ! 
Au cours de l’été 2007, la NASA et l’ESA d’une 
part, et la NASA et l’ASC d’autre part, signaient 
leurs  protocoles d’accord respectifs. Le coût total du 
projet fut estimé, à l’époque, à 3,5 milliards de dollars. 
Il sera estimé, au moment du lancement, à près de 
12  milliards  ! (11  milliards NASA, 850 millions ESA, 
et 150 millions ASC). Le JWST devait fonctionner 



6

pendant une durée minimum de 5 ans, mais les agences 
misaient sur au moins 5 années de plus  : un budget de 
fonctionnement de 1 milliard pour 10 ans d’opération a 
donc été provisionné.   À titre de comparaison, le HST 
aura coûté 4,1 milliards, entre la première phase de son 
étude et son lancement, auxquels il convient d'ajouter 
250 millions par année pour son fonctionnement.  Les 
agences envisagent maintenant une durée d'exploitation 
du JWST d'au moins 20 ans ! 

Finalisation du projet  

Si fabriquer un miroir de 6,5 m ne pose plus de problème 
de nos jours, le placer en orbite est une toute autre 
histoire : en effet, si le HST, qui n’a « qu’un » diamètre de 
2,4 m, était mis à l’échelle du JWST, il serait beaucoup 
trop lourd pour pouvoir être placé dans l’espace ! De plus, 
aucune coiffe de fusée n’étant assez grande pour contenir 
un miroir monolithique de cette taille, il fallait donc le 
replier.

Tous les objets (y compris les télescopes !) émettent un 
rayonnement dans un domaine de longueurs d’onde qui 
dépend de leur température. Aux températures qui nous 

sont familières, ce domaine correspond à celui couvert 
par les instruments du JWST. Pour autant, il faut éviter 
que le signal infrarouge extrêmement faible provenant 
des objets distants soit noyé dans le rayonnement ambiant 
du télescope et des instruments. Ceux-ci doivent donc être 
maintenus à une température la plus basse possible, pour 
qu’ils émettent dans des longueurs d’onde supérieures à 
celles auxquelles seront effectuées les observations. De 
plus, la température de fonctionnement des détecteurs 
infrarouge doit être impérativement très basse (–266 °C).

Le HST est en orbite proche autour de la Terre (à environ 
570 kilomètres). Pour la moitié de chaque orbite, il 
traverse l’ombre de la Terre, où les températures plongent 
à 250 °C sous zéro. Quand il retourne à la lumière du 
Soleil, les températures extérieures sont supérieures à 
100 degrés Celsius.

Ce qui n’est guère propice à des observations dans 
l’infrarouge. Le JWST devra être positionné beaucoup 
plus loin pour être plus froid et à une température stable. 
De plus, il devra être pourvu d’un grand écran qui 
bloquera la lumière du Soleil, de la Terre et de la Lune, 
qui sinon ne manqueraient pas de réchauffer le télescope.
Ne serait-ce qu’en ce qui concerne la fabrication du miroir 

Le JWST en détail, en haut à droite l’instrument MIRI.

primaire, en particulier avec l’utilisation de béryllium 
pour qu'il soit ultraléger, mais aussi pour le rendre pliable 
et pour que sa forme puisse être ajustée dans l'espace, 
la conception du télescope a eu recours aux dernières 
avancées technologiques. Le JWST a aussi bénéficié 

de développements réalisés sur les détecteurs pour 
pouvoir enregistrer des signaux extrêmement faibles, 
sur le contrôle de micro-obturateurs par des systèmes 
de micro-électromécanique (pour le positionnement 
des objets à observer avec le spectrographe NIRSPEC) 
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et sur une toute nouvelle conception du système 
cryogénique requis pour refroidir le détecteur de MIRI 
jusqu'à une température de 7 K. Toutes ces technologies 
«  de pointe  » ont été «  qualifiées  », c'est-à-dire que 
leur efficacité et fiabilité ont été dûment démontrées, 
et certifiées conformes aux spécifications requises pour 
leur utilisation dans l’espace.
Pour masquer le Soleil, la Terre et la Lune ensemble de 
la manière la plus simple, le plus facile est qu’ils soient 
vus par le télescope dans la même direction.  L’endroit 
le plus propice pour que cela soit, est ce que les 
mathématiciens appellent le « second point de Lagrange 
(L2) » du système Soleil-Terre  :   un point de Lagrange 
est une position de l’espace où les champs de gravité de 
deux corps en orbite l’un autour de l’autre, et de masses 
substantielles, se combinent de manière à fournir un point 
d’équilibre à un troisième corps de masse négligeable. 
C’est un point où l’attraction de la Terre ajoutée à celle 
du Soleil induit une période de révolution d’un an autour 
du Soleil, exactement égale à celle de la Terre, permettant 
un alignement constant Soleil -Terre - point L2.
Le point L2 se situe à 1,5 million de kilomètres. Non 
seulement l’accès y est direct, ce qui facilite les problèmes 
de navigation, mais de plus, les forces gravitationnelles 

combinées de la Terre et du Soleil permettent à elles 
seules de maintenir le satellite en position, ce qui évitera 
d’avoir trop souvent recours à des systèmes de propulsion 
auxiliaires, comme c’est hélas le cas pour Hubble dont les 
gyroscopes sont mis à rude épreuve.

L’intégration du télescope avec les instruments a été 
réalisée en 2017 au Centre spatial Johnson à Houston, 
et celle de l’ensemble de l’observatoire (télescope et 
vaisseau spatial) s’est terminée en octobre 2019 dans les 
locaux de Northrop Grumman, en Californie. La masse 
totale de l’observatoire est de 6,2 tonnes (seulement 

Écran (ou bouclier) thermique.

Orbite du JWST – Illustration des points de Lagrange.
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705 kg pour le miroir primaire !) alors que celle du HST 
est de 12 tonnes.

Le JWST est le successeur du HST car ses objectifs 
scientifiques ont été motivés par les résultats de Hubble. 
Mais ils n’observeront pas dans la même gamme de 
rayonnement, et le miroir du premier est beaucoup plus 
grand que celui du second, ce qui lui permettra d’observer 
des objets célestes 400 fois plus éloignés. Il serait plus 
logique de comparer le JWST avec le télescope infrarouge 
spatial Spitzer (2003 - 2020), Ce télescope a réalisé 
de nombreuses découvertes au-delà de l'imagination 
de ses concepteurs, Le JWST avec son miroir géant et 
de nouvelles technologies, est environ 1  000 fois plus 
puissant, et sera en mesure de repousser les frontières 
des découvertes scientifiques de Spitzer  (dont le miroir 

primaire, rappelons-le, était de 83 cm !). 
D'autre part, au-delà de ses découvertes scientifiques, 
Spitzer est également un pionnier pour le JWST en termes 
de fonctionnement d'un télescope qui doit être très froid. 
Spitzer a montré aux ingénieurs comment un observatoire 
infrarouge se comportait dans l'immensité de l'espace. 

Les objectifs scientifiques
Le JWST a été construit pour l’étude de plusieurs grands 
thèmes, définis dès les années 1997 :
(1) la détection des premières lueurs de l’Univers;
(2) la formation et l’évolution des galaxies très lointaines; 
(3) les mécanismes physiques qui régissent la formation 
des étoiles et des planètes, et
(4) l’étude des disques protoplanétaires.
En 2005, à la suite d’une importante augmentation de 

budget du JWST, la NASA a remis en cause l’ensemble 
du programme, et plus spécialement ses objectifs 
scientifiques. Une des conclusions fut que le JWST ne 
devait pas rentrer en compétition avec les télescopes 
terrestres mais conserver toutes ses capacités innovantes. 
Se sont donc rajoutés à ces quatre thèmes initiaux :
(5) l’étude de la nucléosynthèse des premiers éléments 
autres que l’hydrogène et l’hélium (que les astronomes 
appellent les éléments “lourds”), et 
(6) la recherche des supports à l’apparition de la vie.
Les quatre instruments embarqués se sont vu confier des 
responsabilités bien définies :

1. NIRCAM 
C’est l’imageur principal du JWST dans le domaine de 
l’infrarouge proche (entre 0,6 et 5 microns). Construit 
par une équipe de l’Université d’Arizona et le Centre 

de Technologie Avancée Lockheed Martin, sa haute 
sensitivité, son multiplexage de longueurs d’onde, et son 
grand champ de vue permettent de faire de l’imagerie à 
la limite de diffraction et des relevés profonds. C’est de 
plus l’instrument qui sera utilisé comme analyseur de 
front d’onde pour permettre de contrôler l’alignement 
et le phasage du miroir primaire du JWST. Il est aussi 
particulièrement adapté aux principaux thèmes de 
recherche pour lesquels le JWST a été conçu :

•	 détecter la lumière des premières étoiles, des amas 
d’étoiles ou des noyaux galactiques ;

•	 étudier la morphologie et les couleurs des galaxies 
très lointaines vues au cours de leur formation ;

•	 détecter la distorsion de la lumière due à la matière 
noire via des effets de lentilles gravitationnelles ; 

•	 rechercher les supernovae dans les galaxies lointaines 

Image de la nébuleuse de la Tête de Singe (à gauche dans la lumière visible, à droite dans la lumière infrarouge).
 Crédits : télescope spatial Hubble.
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et élaborer leurs courbes de lumière ;
•	 détecter, puis procéder à l’imagerie et à la spectroscopie 

de protoétoiles, disques protoplanétaires, et 
exoplanètes ;

•	 étudier la population stellaire dans les galaxies 
proches, les étoiles jeunes dans la Voie lactée et les 
objets de la ceinture de Kuiper dans notre Système 
solaire.

2. NIRSpec
C’est un spectrographe dispersif multi-objets qui opère 
dans l’infrarouge proche. Il a été construit pour l’Agence 
spatiale européenne (ESA) par le consortium Astrium. 
Cet instrument peut observer simultanément plus de 100 
sources sur un champ de 3×3 minutes d’arc. C’est le 
premier instrument jamais envoyé dans l’espace à avoir 
cette capacité. Avec une sensibilité dans une gamme de 
longueurs d’onde qui correspond aux radiations des plus 
lointaines galaxies ses objectifs scientifiques clés sont :

•	 la formation des étoiles et des abondances chimiques 
des galaxies lointaines jeunes ;

•	 la recherche des structures dans les disques de 
gaz dans les noyaux galactiques actifs (galaxies 
très lumineuses et énergétiques, observables aux 
longueurs d’onde allant des ondes radio aux rayons 
X) ;

•	 la distribution des masses des étoiles dans les amas 
d’étoiles jeunes.

3. NIRISS 

C’est l’instrument fourni par l’Agence spatiale canadienne 
(ASC), avec le détecteur de guidage de précision (FGS) 
(ces deux instruments étant couplés dos à dos dans 
une même structure mais fonctionnant d’une manière 
totalement indépendante). Cet instrument sera doté de 
capacités uniques lui permettant de :

•	 trouver les objets les plus anciens et les plus éloignés 
dans l’histoire de l’Univers ;

•	 découvrir de nouvelles exoplanètes semblables à 
Jupiter autour de jeunes étoiles proches de nous, et 
ce, malgré la lumière éblouissante de ces dernières ;

•	 détecter la mince couche atmosphérique de petites 
planètes habitables ressemblant à la Terre qui passeront 
devant leur étoile. On pourra alors déterminer la 
composition chimique de ces atmosphères et y 
chercher de la vapeur d’eau, du dioxyde de carbone et 
d’autres biomarqueurs potentiels comme le méthane 
et l’oxygène.

4. MIRI 
C’est le seul instrument du JWST qui opérera dans 
l’infrarouge moyen (5 - 28 microns). Il a été proposé 
par un consortium européen, sous l’égide de l’ESA, La 
participation française à la réalisation de cet instrument 
s’est effectuée à travers le Centre national d’études 
spatiales (CNES). Cet instrument est composé de deux 
parties : l’imageur-coronographes-spectrographe de basse 

À gauche MIRI : en bleu le MRS (Spectrographe de résolution moyenne), en orange MIRIM, (Ima-
geur/Coronographe/Spectrographe de basse résolution) conçu et réalisé par les laboratoires 
français, sous la responsabilité du CEA et sous l’égide du CNES. A droite l’intérieur de MIRIM.
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résolution, appelé MIRIm, et le spectrographe MRS/IFU de 
moyenne résolution, développé au Royaume-Uni. MIRIm 
a été conçu et réalisé au Département d’astrophysique 
de l’IRFU, CEA-Saclay, avec la participation du LESIA 
(Observatoire de Paris), de l’Institut d’astrophysique 
spatiale (IAS) de l’université Paris-Sud, et du Laboratoire 
d’astrophysique de Marseille (LAM). 

Le grand diamètre du JWST, sa basse température 
ambiante, et les détecteurs à la pointe de l’art de MIRI 
permettent d’obtenir à 8 microns une sensitivité (flux 
limite de détection) 50 fois celle de Spitzer avec une 
résolution angulaire 7 fois supérieure. MIRI est donc 
sensé contribuer d’une manière prépondérante aux 
grands thèmes de recherche pour lesquels le JWST a été 
construit :

•	 l’émission d’hydrogène et la recherche des premiers 
objets lumineux ;

•	 la formation des premières galaxies dans l’Univers ;

•	 l’émission des éléments sombres dans les noyaux 
galactiques actifs ;

•	 la formation des étoiles et systèmes protoplanétaires.

•	 l’évolution des systèmes planétaires, la taille des 
objets de la ceinture de Kuiper et les comètes 
faiblement lumineuses ;

•	 l’observation des naines brunes et des planètes 
géantes ;

•	 la recherche des conditions favorables à l’apparition 
de la vie.

La séparation angulaire entre une étoile et son système 
planétaire étant très petite, l’utilisation de coronographes 
classiques à pastille de Lyot n’est pas adaptée. Une 
nouvelle génération de coronographes a été mise au 
point et étudiée par une équipe de chercheurs menée 
par Daniel Rouan, de l’Observatoire de Paris (LESIA). 
Ces coronographes appelés 4QPM (Four-Quadrant 
Phase Masks) permettent d’atténuer le flux de l’étoile et 
d’observer des objets angulairement très proches. 

Beaucoup de déboires et de reports 
du lancement !
Initialement prévu pour 2013, la date du lancement a 
été sans cesse reportée, alors que les instruments étaient 
prêts depuis longtemps et installés confortablement dans 
l’ISIM (MIRI avait été livré à la NASA en avril 2012). Ces 
reports ont eu un côté somme toute positif puisqu’ils ont 
permis de réaliser de nombreuses activités pré-lancement 
(tests, finalisation des scripts, préparation de la recette 
en vol et des calibrations, ainsi que l’élaboration d’outils 
d’analyse de haut niveau).

Il fallait attendre l’issue des tests de l’OTIS (l’ensemble 
miroirs et instruments) qui se sont terminés en septembre 
2018. Alors que les expectatives pointaient vers une 
date de lancement ultérieure à mi-mai 2020, il n’y avait 
plus qu’à attendre que le SCE (bus du vaisseau spatial 
+ boucliers thermiques + modules du propulseur) ait 
terminé ses propres tests et soit prêt pour l’intégration. 
Malheureusement, le SCE a souffert de problèmes liés au 
propulseur et surtout à la fragilité de l’écran thermique 
révélée par les tests de déploiement sous 1 g. Du coup, le 
lancement fut à nouveau reporté !

L’assemblage de l’observatoire au complet qui était 
prévu pour octobre 2018 n’a eu finalement lieu qu’en 
2019. S’ensuivit ensuite une nouvelle batterie de tests 
acoustiques et de vibration simulant le fracas et les 
secousses du lancement, précédés et suivis par de 
nouveaux tests de déploiement de l’écran thermique. Le 
lancement fut alors prévu pour mars 2021. Puis, reporté au 
31 octobre 2021 en raison de la pandémie de coronavirus 
(COVID-19) ainsi que de certaines difficultés techniques 
liées aux résultats des tests de vibration. 

Mais les déboires n’étaient pas terminés ! Pour améliorer la 
sécurité, Arianespace fixait conjointement avec la NASA 
et l’ESA le 18 décembre 2021 comme date de lancement 
prévue pour le vol VA256. De fait, l’ESA, Arianespace et 
RUAG Space (la société suisse responsable du carénage 
de charge utile) ont dû modifier au tout dernier moment 
la conception des évents sur le bouclier d’Ariane 5 pour 
éviter qu’une dépressurisation endommage l’observatoire 
lors des largages du carénage. En effet, après analyse des 
données recueillies sur des vols antérieurs d’Ariane (en 
particulier lors du dernier lancement d’une fusée de ce 
type le 30 juillet 2020), il fut craint que l’air résiduel 
emprisonné dans les membranes de l’écran solaire cause 
une « surpression » au moment de la séparation, ce qui 
aurait pu l’endommager. Un nouveau matériel a dû être mis 
au point pour s’assurer que les évents autour de la base du 
carénage de la charge utile restaient entièrement ouverts 
lors du vol d’Ariane, ce qui permettait d’équilibrer la 
pression avant la séparation, et des orifices de ventilation 
ont été introduits sur le carénage. 

Le 18 décembre a glissé vers le 22, suite à un incident 
survenu pendant les opérations d’installation du satellite à 
Kourou (un relâchement soudain et imprévu d’une bande 
de serrage – qui fixe le JWST à l’adaptateur du lanceur – 
et qui a provoqué une vibration dans tout l’observatoire). 
Mais le JWST ne voulait, semble-t-il décidément pas nous 
quitter ! Malgré une RAL (revue avant lancement) réussie la 
météo est devenue contraire (vents violents en altitude) et 
Arianespace s’orienta vers un tir le 25 décembre au plus 
tôt. Cette fois-ci, c’était la bonne ! Tout était en ordre de 
tir, les plus ultimes mesures de précaution étaient prises…
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Le JWST est enfin parti le 25 décembre à 13 h 20 (heure 
de Paris). Ce lancement spectaculaire fut une réussite 
parfaite, et tous les évènements se sont déroulés comme 
prévu, au moindre détail près. Un très grand succès pour 
Arianespace et le CNES. 
C’est un moment que toutes les équipes qui avaient 
travaillé sur ce projet attendaient avec un mélange 
d’impatience et d’appréhension. 
Le décompte final fut irrespirable. En dehors des coûts 
financiers pharamineux, il s’agissait surtout de plus de 
40 millions d’heures de travail humain  ! Puis soudain, 
une fumée au loin apparut, à 5 km du site d’observation 
le plus proche du pas de tir. Le moteur Vulcain s’est 
allumé. Il fallut encore attendre 7 secondes avant que les 

gigantesques boosters à poudre qui flanquent la fusée ne 
s’allument dans une lumière éclatante. Alors que la fusée 
disparaissait rapidement dans les nuages, le son parvenait 
enfin aux spectateurs émus dans un vacarme crépitant. 
Aux dires de tous, le tonnerre métallique donnait la chair 
de poule. 

Certains scientifiques impliqués dans la mission peinaient 
à retenir leur émotion. Certains pleuraient, discrètement. 
Tous étaient sidérés par la puissance du spectacle. Le 
lancement était un moment charnière, mais ce n’était que 
le début de la mission. Les 20 jours qui l’ont suivi ont vu 
le vaisseau spatial se déployer, la plus difficile et la plus 
complexe opération jamais tentée dans l’espace. 

Ça y est ! Il est enfin lancé !
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Après le lancement 

Les premières données de télémétrie furent reçues 
environ cinq minutes après le lancement. Vingt-cinq 
minutes plus tard, le réseau solaire se déployait, et 
fournissait l’électricité requise. Peu après, la liaison 
de communication depuis la station au sol de Malindi 
au Kenya fut établie, et les premières commandes au 
vaisseau spatial pouvaient être envoyées.

Puis, une manœuvre d’ajustement de la trajectoire, suivie 
de l’activation des capteurs de température et des jauges 
de contrainte du télescope ; du déploiement de l’antenne 
à haut débit qui transmettra les données (au moins 28,6 
Goctets, deux fois par jour) ; du positionnement de la tour 
dépliable (DTA, «  Deployable Tower Assemby  »), qui 
s’étend sur 1,22 mètres, pour mettre l’espace nécessaire 
entre la section supérieure de l’observatoire, qui abrite 
les miroirs et les instruments scientifiques, et le bus de 
vaisseau spatial, qui détient l’électronique et les systèmes 
de propulsion, et qui laisse l’espace suffisant pour que 
les membranes de l’écran solaire puissent se déployer 
complètement.  

Ensuite, le déploiement des deux «  bras  » de l’écran 
solaire, et qui étiraient avec eux, les différentes couches 
de cet écran pour l’étendre à sa pleine largeur de 14,32 
mètres. Puis, la tension de chacune des couches, qui était 
sans doute l’opération la plus redoutée. 

Finalement, la structure du support du miroir secondaire 
(soutenu par trois entretoises légères dépliables qui 
mesurent chacune près de 7,6 mètres de long et sont 
conçues pour résister aux rigueurs de l’espace  ; des 
systèmes de chauffage spécialisés ont été utilisés pour 
réchauffer les joints et les moteurs nécessaires à un 
fonctionnement continu). 

Le déploiement complet fut finalisé le 8 janvier à 
19 h 17 (heure de Paris), lorsque les deux ailes du miroir 
primaire, furent verrouillées dans leur position finale 
(ces ailes contiennent chacune trois des 18 segments 
hexagonaux revêtus d’une fine couche d’or – notons que 
pour l’ensemble des miroirs, un total de 48,25 g d’or, soit 
l’équivalent de 2 480 €, ce qui n’est pas exorbitant dans 
le budget global !). 

C’est maintenant aux opticiens de jouer pour aligner 
l’optique du télescope, c’est-à-dire pour ajuster les 
18 segments du miroir primaire du plus grand et le 
plus complexe observatoire spatial jamais réalisé –
un alignement qui prendra des mois. Les instruments 
scientifiques pourront être alors calibrés, pour nous 
délivrer leurs premières images cet été. 
Ce sera sans doute l’occasion d’un prochain article  ! 
En attendant, je ne saurais que trop recommander aux 
lecteurs avides de renseignements de consulter le site 
officiel français jwst.fr.

n

«Ça y est ! Le 24 janvier 2022, à 20 h 05 (UTC+1, heure 
en France) le JWST est arrivé sur son orbite autour de 
L2, 30 jours après son lancement. La communauté a suivi 
minute après minute le déroulement des opérations, avec 
des sentiments mêlés, d’excitation, d’inquiétude, de joie 
et de crainte, qui ponctuaient la fin de l’odyssée du JWST 
vers son point de stationnement (une manière de dire 
puisqu’il ne restera pas dans une position vraiment fixe, 
mais se déplacera sur une orbite très large autour de L2). 
Sans oublier les extraordinaires prouesses techniques qui 
ont conduit au déploiement d’un origami au cours de ce 
voyage. Nous avons vécu et sursauté aux soubresauts 
des variations de la vitesse du JWST qui reflétaient les 
manœuvres des boosters qui mettaient l’observatoire dans 
son orbite. Nous avons vu la distance vers L2 qui se ré-
duisait au fil des minutes, mais nous étions inquiets parce 
que la vitesse ne baissait pas : le JWST devait arriver sur 
son orbite avec une vitesse de 100 m/s, alors qu’il y est 
arrivé à une vitesse double. Les ingénieurs de la NASA 
nous expliqueront prochainement pourquoi, mais cela n’a 
plus d’importance.»
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Dossier

Les lois de Kepler
Les lois de Kepler telles qu’elles sont présentées dans Les éléments de cosmographie , ouvrage de A. Grignon, 
« à l’usage des élèves de première A et B de l’enseignement secondaire des garçons » et « de 4e année de 
l’enseignement secondaire des jeunes filles » (nous sommes en 1905...)
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HISTOIRE

PETITE HISTOIRE DE LA 
3e LOI DE KEPLER

Pierre Le Fur, Toulon

Les trois lois de Kepler fondent la base de l’astronomie moderne. L’histoire de leurs découvertes constitue une étape 
clef. La troisième loi ne concernait que l’aspect cinématique. Il faudra attendre Isaac Newton pour en donner une 

interprétation dynamique.

Les publications des ouvrages de 
Kepler s’étendent de 1595, Mysterium 

Cosmographicum (le Secret du monde), à 1627, 
Tabulae Rudolphinae (les Tables Rudolphines). 
Cette période est à la charnière entre le monde 
de la Renaissance et le siècle des Lumières. Elle 
est scientifiquement dominée par les astronomes 
et mathématiciens jésuites, comme Clavius, qui 
viennent d’établir le calendrier du pape Grégoire 
XIII en 1582, toujours en usage de nos jours. 
Elle coïncide avec la date de naissance de la 
physique classique puisque c’est en 1610 que 
Galilée observa les astres avec sa lunette, et qu’il 
décrivit ses expériences dans son premier et 
fameux ouvrage Sidereus Nuncius, (le messager 
des étoiles). L’Astronomia nova de Kepler 
imprimé en 1609 contient les deux premières 
lois décrivant le mouvement de la planète Mars 
: trajectoire elliptique autour du Soleil, celui-ci occupant 
l’un des foyers et la loi des aires qui précise le déroulement 
temporel du déplacement le long de l’orbite. Douze ans 
plus tard, Epitome Astronomiae Copernicanae rassemble 
la généralisation de ces deux lois à toutes les planètes 
connues de Mercure à Saturne et même aux satellites 
galiléens de Jupiter récemment découverts. Mais surtout 
Kepler y présente le fruit de ses travaux achevés dès 
1618 : la troisième loi que l’on traduirait dans une écriture 
moderne, que nous retiendrons, par : 

T²/a3 = constante [1]

si T est la période de révolution sidérale de la planète 
autour du Soleil et a, le demi-grand axe de son orbite 
elliptique. 
Notons qu’il savait calculer T à partir des observations de 
la période apparente de la planète et de celle de la Terre. 
Celles-ci étant essentiellement les résultats obtenus par 
Tycho Brahé, le génial astronome observateur danois mort 
en 1601 dont Kepler, grand mathématicien mais piètre 
observateur, avait pu exploiter les mesures reportées sur 
ses cahiers d’observations. 

Par contre, à cette époque, la valeur réelle de a caractérisant 
la taille de l’orbite, restait totalement inconnue ! On 
connaissait uniquement le rapport aplanète/aTerre. En d’autres 
termes, si l’unité de a était l’unité astronomique : aTerre = 1. 
Par exemple aJupiter = 5,2.

L’approche képlérienne est mathématique donc 
cinématique. La loi est empirique, sans justification 
dynamique correcte, qui viendra plus tard avec Newton. 
Kepler l’écrit sous la forme : « les temps périodiques de 
deux planètes quelconques sont entre eux en proportion 
exactement sesquialtère1 de leur distance moyenne. ». [2] 

Cette écriture conduit certains historiens [1] à penser que 
le mot logarithme est sous-entendu, et que Kepler les a 
utilisés sous la forme : 
Ln (T2/T1) = 3/2 Ln (a2/a1) où la proportionnalité apparaît. 
En effet, John Napier venait de publier sa puissante 
invention mathématique qu’est le logarithme en 1614. À 
la fin de l’année 1616, Kepler en a pris connaissance et l’a 
adopté avec un grand enthousiasme puisqu’il lui a permis 
de simplifier considérablement ses calculs. Il consacrera 

1   Sesquialtère = 3/2.

Fig.1. Du Soleil à Saturne, proportions des orbites connues en 1621 et angles sous 
lesquels on voit les orbites. Par exemple celle de la Terre vue depuis Jupiter ou 
Saturne. Image tirée de Prodomus dissertationum cosmographicarum par Johannes 
Kepler 1621 (source https://gallica.bnf.fr/).

Les lois de Kepler
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un ouvrage spécifique aux logarithmes. Puis, lorsqu’il 
publiera ses éphémérides (Tables Rudolphines 1627) il 
les dédiera à Napier.

La formule de l’harmonie céleste
Avant tout, il apparaît immédiatement que pour Kepler, 
les planètes tournent autour du Soleil. Très tôt, lors de 
sa formation par l’astronome Maestlin, dans les années 
1590, il avait adopté le modèle du chanoine Copernic 
(publié en 1543) et abandonné celui de Ptolémée 
(2e  siècle après Jésus Christ), pourtant plus précis à 
cette époque et validé par les astronomes du pape. 
Cette conviction s’exprime clairement dans son premier 
ouvrage Mysterium Cosmographicum. L’esthétique de ce 
modèle correspond parfaitement avec l’état d’esprit de 
Kepler : très chrétien, puisqu’il se destinait à être pasteur, 
il y voyait la Sainte Trinité : Dieu associé au Soleil, Jésus-
Christ à la sphère céleste et les planètes au Saint-Esprit. 
Il affirme dès 1595 que «  le Créateur, Très Bon et Très 
Grand s’est référé pour la création de ce monde mobile 
et la disposition des cieux à ces cinq corps réguliers qui, 
depuis Pythagore et Platon jusqu’à nos jours, ont acquis 
une si grande célébrité2, et qu’il a ordonné en fonction de 
leur nature le nombre des cieux, leurs proportions et le 
rapport de leurs mouvements. ». [2]. 

Dans son esprit, les planètes sont donc placées dans un 
ordre et à des distances qui traduisent une harmonie 
divine. Les orbes circulaires des planètes sont inclus 
dans une série des cinq polyèdres réguliers, du cube pour 
Saturne, à l’octaèdre pour Mercure. Le langage de Dieu 
est mathématique et harmonieux. 
La première publication de sa troisième loi se fait en 1619 

2   Cinq polyèdres réguliers. 

dans Harmonices Mundi car elle ajoute à son image du 
monde un lien pythagoricien donc mathématique entre T 
et a, comparable à celui existant entre la longueur d’une 
corde d’instrument musical et la note fondamentale 
émise. Il y voit une sorte de « musique des sphères » qui 
s’exprime ainsi. 
Notons qu’il a alors abandonné son idée d’enchâsser 
les orbites dans des polyèdres, il s’est incliné devant les 
résultats des mesures et de ses calculs (orbites elliptiques 
et non circulaires).

On retrouve ainsi l’idée d’un modèle (polyèdres 
«  osculateurs  ») confronté à une expérience (orbites 
mesurées) ; ici ce modèle est religieux et philosophique 
ce qui diffère évidemment très largement des processus 
de pensée de la science moderne. 
Le modèle héliocentrique du chanoine Copernic a été 
condamné d’abord par Luther et Melanchton en 1541 
dès sa prépublication Narratio Prima, puis par l’Église 
catholique en 1616 [4]. C’est l’époque des guerres de 
religions. Ces condamnations conduisirent aux complexes 
et douloureuses affaires Giordano Bruno et Galilée, où 
dogmes, astronomie, politique et jalousies s’entremêlent.
L’héliocentrisme fut donc défendu avec courage par 
Kepler malgré les risques encourus. Cependant, science et 
religion resteront intimement liées pendant plus de deux 
siècles, à la recherche de la structure mathématique du 
monde céleste, image de l’harmonieuse pensée de Dieu. 

L’interprétation dynamique de Newton 
Kepler échoua dans ses tentatives de développer un 
modèle cohérent de cause physique aux révolutions des 
planètes autour du Soleil. Pour lui, la rotation propre 

Fig.2. Polyèdres et orbites tirée de Prodomus dissertationum cosmographicarum par Johannes 
Kepler (1621). L’orbite la plus extérieure est celle de Saturne, puis on trouve Jupiter, Mars... 

(source gallica.bnf.fr/BnF)
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du Soleil, alors mesurée par les premiers observateurs 
comme Galilée ou le Père jésuite Scheiner, entraînait les 
planètes, idée développée plus tard par Descartes dans la 
théorie des tourbillons. 
Il faut attendre 1687 et la publication de l’ouvrage 
révolutionnaire d’Isaac Newton, Philosophiae naturalis 
principia mathematica pour obtenir une interprétation 
dynamique des mouvements orbitaux des planètes. 
Entretemps, Kepler était décédé en 1630. Newton y 
démontre les lois de Kepler à partir de sa seconde loi de 
la mécanique, qu’on appelle principe fondamental de la 
dynamique du point (PFD) et avec sa loi de la gravitation 
universelle (GU) appliquée à l’action à distance du Soleil 
sur la planète qui est le moteur dynamique du mouvement. 
Là encore, comme pour Kepler, ses hypothèses sont 
inspirées d’idées religieuses et alchimistes mais aussi des 
travaux scientifiques de Galilée, entre autres. 
Cette troisième loi de Kepler s’obtient très simplement 
dans le cas d’une orbite circulaire, comme la Terre (en 
première approximation) : 
•	 (PFD) F = mγ où γ est l’accélération et m la masse de 

la planète. Les mathématiques (cinématique) donnent 
γ = 4π²a/T² pour le mouvement circulaire uniforme. 
Soit F = m 4π²a/T² 

•	 (GU) F = G mMs/a² où Ms est la masse du Soleil et G 
la constante de gravitation universelle dont la valeur 
numérique est liée aux unités choisies.

En comparant les deux expressions possibles de F, on 
obtient : 

T²/a3 = 4π² / (GMs)

C’est la nouvelle expression de la troisième loi de Kepler 
où la constante est enfin explicitée et où on observe qu’elle 
est valable quelle que soit la masse m de la planète3. 
Cette démonstration simple est souvent présentée aux 
étudiants en quelques minutes alors qu’elle représente des 
années de travaux acharnés des plus grands physiciens du 
XVIIe siècle. Newton ne s’est évidemment pas contenté 
du cas simpliste d’une orbite circulaire. Son œuvre aboutit 
aux trois lois de Kepler dans le cas général. Pour cela il a 
dû mettre au point des méthodes mathématiques originales 
pour intégrer les équations différentielles du mouvement. 
Ce n’est que vers 1830 que le mathématicien-astronome 
Jacques Binet proposa une méthode rapide enseignée aux 
étudiants de premier cycle. 

La dernière étape 
Il apparaît clairement qu’en mesurant T, a, G on peut 
accéder aisément à la masse Ms du Soleil. Depuis les 
mesures de la parallaxe de Mars par Cassini et Richer 
en 1672, les astronomes avaient enfin accès aux valeurs 
des demi-grands axes a des orbites. La valeur de l’unité 
3  Cette formule est valable si la masse m de la planète est petite 
devant Ms, la masse du Soleil.

astronomique avait donc été calculée : 1 UA= aTerre = 138 
millions de km en unités modernes [5]. Rappelons que la 
valeur actuelle est 149,6 millions de km. Contrairement à 
Kepler, Newton avait donc connaissance de la taille réelle 
du Système solaire jusqu’à Saturne. 
Notons que cette détermination associée à l’observation 
d’un décalage temporel entre les observations des éclipses 
des satellites galiléens de Jupiter et leurs éphémérides 
calculées, avaient conduit l’astronome danois Ole 
Roëmer, sous la direction du même Cassini, à calculer la 
vitesse de la lumière en 1676 : c = 260 000 km/s [5]. 
Malgré ces progrès considérables la troisième loi de 
Kepler contenait toujours une inconnue : la constante de 
gravitation universelle G ! Newton mourut en 1727 sans 
avoir une idée précise de sa valeur tant elle était difficile 
à déterminer. 
Il faut attendre 1798 pour que l’anglais Henry Cavendish 
(né en 1731 à Nice) parvienne à mesurer G au laboratoire 
en utilisant une balance de torsion ultrasensible. Les 
forces de gravitation réciproques mais infimes de deux 
masses sphériques de plomb sont déduites du couple 
qu’elles exercent. Connaissant la distance entre les centres 
des sphères il en déduisit G. La balance utilisée avait été 
inventée auparavant par John Michell un astronome-
géologue anglais. 
Cent quatre-vingts années de travaux théoriques et 
pratiques, longs et complexes ont été nécessaires pour 
maîtriser la physique contenue dans l’une des formules les 
plus importantes de l’astronomie classique, la troisième 
loi de Kepler.

Épilogue
Ainsi les masses du Soleil, de la Terre et de toutes les 
planètes possédant au moins un satellite naturel furent 
connues au début du XIXe siècle. Actuellement, cette 
loi reste également applicable aux satellites artificiels de 
la Terre. Mais l’histoire n’est pas complète si l’on omet 
de signaler la généralisation de cette loi dans le cas où 
les astres en interaction gravitationnelle ont des masses 
d’ordres de grandeur proches comme pour les étoiles 
doubles ou les couples étoile – exoplanète fortement 
massives. Ce que l’on appelle le problème à deux corps. 
En ce début d’année 2022, rendons hommage à Kepler, le 
visionnaire, né il y a 450 ans. Sa troisième loi reste l’une 
des plus belles formules de la physique. L’apprendre par 
cœur peut être comparé à l’apprentissage d’un poème de 
Baudelaire… 

n
[1] https://mathpages.com/rr/s8-01/8-01.htm 
[2] « Science classique et théologie », Robert Locqueneux chez 
Vuibert, 2010, collection adapt-Snes, p15. 
[3] « Ciel passé, présent », Gilbert Walusinski chez Etudes 
vivantes, Paris-Montréal, 1981, p72. 
[4] idem p 62. 
[5] https://www.observatoiredeparis.psl.eu.
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AVEC NOS ÉLÈVES

PESER JUPITER
Isabelle Santos, Toulouse

Comment peut-on connaître la masse de Jupiter alors qu’on ne peut pas la poser sur une balance ? Cet article vous 
montre comment faire avec un télescope, la troisième loi de Kepler et un peu de calcul.

J’ai fait faire cette expérience aux participants 2e étoile 
des camps astro de l’association Planète Sciences.

La loi de Kepler
En 1609, Kepler a découvert que les planètes suivent 
des orbites elliptiques autour du Soleil, et que le Soleil 
est situé à un des foyers de l’ellipse. Cette découverte 
s’applique aux planètes autour du Soleil, mais aussi aux 
satellites autour des planètes, et de façon générale à tout 
objet en orbite autour d’un autre objet significativement 
plus lourd que lui.
La troisième loi de Kepler décrit le lien entre la masse 
d’un objet et la trajectoire des objets qui l’orbitent. 
Formellement, cette loi énonce :
Soit un objet de masse m en orbite autour d’un objet de 
masse M de sorte que le demi-grand axe de l’orbite soit 
égal à a et sa période égale à T.

 Alors on a , T2
a3 =

4r2
G(M + m)

avec G = 6,674×10-11 m3 kg-1 s-2, la constante universelle 
de gravitation. 
Si on néglige m, le terme de droite dans cette équation 
est une constante pour un M donné. Ainsi, l’orbite des 
satellites de Jupiter est directement liée à la masse de 
Jupiter. En observant le déplacement de Io − un des 
satellites galiléens – nous allons en déduire la masse de 
Jupiter.

Ici, nous ferons quelques approximations :
•	 nous considérons que l’orbite des satellites galiléens 

est circulaire. De cette façon, le rayon de l’orbite est 
égal au demi-grand axe. Cette hypothèse va simplifier 
la détermination du demi-grand axe des satellites. En 
pratique, l’excentricité de ces satellites est inférieure 
à 0,01, donc les orbites sont presque des cercles ;

•	 nous supposons la masse des satellites négligeable 
devant la masse de Jupiter : m  << M. Cela nous 
permet de simplifier le numérateur du terme de droite 
dans l’équation ci-dessus. En pratique, Jupiter est 
13 000 fois plus massive que la plus massive de ses 
lunes.

Nous pouvons alors écrire M = GT2
4r2a3 ,

et il suffit de déterminer le rayon et la période de l’orbite 
d’une de ses lunes pour en déduire la masse de Jupiter.

Jupiter et ses satellites
Jupiter est la cinquième planète du Système solaire en 
partant du Soleil. Un cortège de plus de soixante satellites 
est en orbite autour. Quatre d’entre eux – Io, Europe, 
Ganymède et Callisto – ont été découverts par Galilée 
au 17e siècle et sont appelés les satellites galiléens. Ces 
satellites sont particulièrement intéressants car ils sont 
faciles à observer, même avec un petit instrument. En 
outre, la période orbitale de Io est de 1,8 jour, ce qui 
permet de facilement observer plusieurs révolutions. Or 
plus nous pourrons observer de révolutions d’un satellite, 
plus les valeurs obtenues par cette méthode seront 
précises. 

Photo de Jupiter avec l’ombre de Io projetée à sa surface. NASA/Juno.

Les lois de Kepler
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Déroulement général de l’expérience

Si l’énoncé de la troisième loi de Kepler peut sembler 
trivial, déterminer la période et le demi-grand axe de 
ces satellites demande plusieurs nuits d’observation. 
Selon le matériel et le temps à disposition, ainsi que la 
période de l’année et la météo, certaines parties de cette 
manipulation peuvent être remplacées par l’utilisation du 
logiciel Stellarium.
La situation idéale consiste à avoir des groupes de 
3 personnes, où chaque groupe mène ses propres 
observations. Mais il est possible d’avoir des groupes 
plus grands où les stagiaires observent chacun leur tour.

Matériel nécessaire pour un groupe :
•	 un télescope ;
•	 un chronomètre. Alternativement, on peut choisir d’utili-

ser un appareil photo plutôt qu’un chronomètre ;
•	 papier, crayons...
•	 des supports rigides sur lesquels écrire ;
•	 des lampes rouges ;
•	 le logiciel Stellarium (disponible à l’adresse http://stella-

rium.org/).

Plus le nombre de nuits consécutives d’observation sera 
grand, meilleure sera la précision du résultat. Il faut 
observer pendant au moins quatre nuits pour voir deux 
révolutions complètes de Io, ce qui constitue le minimum 
afin de pouvoir caractériser son orbite.

Observation du système jovien
Parmi les satellites que l’on voit dans un télescope, a 
priori, on ne sait pas lequel est Io, Europe, Ganymède 
ou Callisto. Afin de pouvoir les désigner quand même, 
on peut leur donner des noms arbitraires (par exemple 
«  satellite A  » ou «  pomme  »). On commencera toute 
observation par la réalisation d’un schéma indiquant 
la position relative de Jupiter et de ses satellites. Au fil 
des observations, on constatera que certains satellites 
s’éloignent plus de Jupiter que d’autres. 
En outre, bien que Io soit le satellite le plus proche de 
Jupiter, la distance angulaire entre Jupiter et Io peut être 

plus grande que celle entre Jupiter et un autre satellite 
galiléen. Il est donc important de suivre le parcours des 
quatre satellites galiléens au fil du temps afin de ne pas 
les confondre.
On peut également s’aider d’une éphéméride ou de 
Stellarium afin de connaître la configuration du système 
jovien. On réduit ainsi le risque de confondre deux 
satellites.
Attention cependant, ce que l’on voit dans le télescope est 
à l’envers par rapport à ce que l’on voit sur un écran avec 
le logiciel Stellarium ! En effet, un télescope « retourne » 
les images, comme lorsque l’on regarde son reflet dans 
une cuillère1. 
À cause du mouvement de la Terre et de Jupiter autour 
du Soleil, il n’est pas toujours possible de mener cette 
expérience. En effet, il faut que Jupiter soit suffisamment 
haute sur l’horizon pendant la nuit. 
Vous pouvez déterminer la visibilité de Jupiter avec 
Stellarium, grâce à l’outil des calculs astronomiques 
(touche F10). Par exemple, on voit dans la capture d’écran 
suivante qu’en 2022, si on veut observer Jupiter à minuit, 
on ne pourra le faire qu’à partir de mi-juillet. 

Ainsi, la période d’août à novembre 2022 est propice 
pour mener cette expérience.

Distances angulaires
La distance angulaire est l’angle sur la voûte céleste qui 
sépare deux objets. Pour mesurer la distance angulaire 
qui sépare Jupiter de ses satellites, nous allons utiliser le 
mouvement de rotation de la Terre sur elle-même. 
Lorsque l’on regarde dans un télescope non-motorisé, 
on voit les objets se déplacer petit à petit, du fait du 
mouvement de rotation de la Terre sur elle-même. Au 
fil du temps, les objets célestes qui étaient visibles dans 
l’oculaire sortent du champ de vision. Le schéma suivant 
illustre la position de Jupiter et de Io vus dans l’oculaire à 
trois moments différents.

1   Si, en plus, on utilise un renvoi coudé, une des dimensions (droite 
gauche ou haut bas) est redressée mais pas l’autre...Jupiter et ses satellites sur Stellarium.

Les lois de Kepler
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La Terre fait un tour sur elle-même en 24 heures. 
Avec une règle de trois, on trouve que la Terre 
tourne sur elle-même au rythme de 360°  / 24 h 
soit 15° par heure ou encore 15 secondes d’arc 
par seconde.

Afin de déterminer la distance angulaire qui 
sépare Jupiter de ses satellites, on peut alors 
suivre la procédure suivante2 :
1. Centrez Jupiter dans l’oculaire. Dans le cas 
d’une monture motorisée, assurez-vous que le 
suivi n’est pas enclenché.
2. Choisissez un des satellites de Jupiter et 
regardez la direction dans laquelle Jupiter semble se 
déplacer dans l’oculaire. Notez qu’il s’agit ici d’un 
mouvement apparent dû à la rotation de la Terre sur elle-
même.
3. Si Jupiter suit le satellite :
   a. Dès que le satellite atteint le bord du champ de vision 
de l’oculaire, enclenchez le chrono et notez l’heure. 
   b. Continuez de regarder dans l’oculaire jusqu’à ce que 
Jupiter arrive au bord du champ de vision de l’oculaire.
   c. Arrêtez le chrono lorsque Jupiter atteint le bord du 
champ de vision de l’oculaire. 
   d. Notez le temps écoulé en positif.
4. Si au contraire Jupiter sort de l’oculaire avant le 
satellite :
   a. Enclenchez le chrono et notez l’heure lorsque Jupiter 
atteint le bord du champ de vision de l’oculaire.
   b. Arrêtez le chrono lorsque le satellite atteint le bord du 
champ de vision de l’oculaire.
   c. Notez le temps écoulé en négatif.
5. Utilisez la règle de conversion énoncée ci-dessus 
(15"/s) pour déterminer la distance angulaire entre Jupiter 
et son satellite en fonction du temps mesuré au chrono.

Il est possible de répéter cette observation avec chacune 
des lunes galiléennes, si on veut pouvoir comparer la 
masse déduite dans chaque cas. Faites des mesures 
plusieurs fois au cours de la nuit, par exemple une fois 
par heure. Faites de même plusieurs nuits d’affilé afin de 
voir quelques orbites de Io.

Exploitation des données
Après avoir collecté des données pendant plusieurs nuits 
d’observation, on peut tracer un graphique représentant la 
distance entre Jupiter et chacune de ses lunes en fonction 
du temps. On peut également chercher à trouver la 
sinusoïde d’équation y = A sin(ωt + ϕ) qui colle le mieux 
aux données. En effet, la distance angulaire entre Io et 
Jupiter suit − en première approximation − une sinusoïde.

2   On suppose ici que la ligne Io Jupiter est parallèle à l’équateur 
céleste. Comme ce n’est pas forcément le cas, on induit une erreur qui 
peut dépasser 10 %. On peut minimiser l’erreur en choisissant un ocu-
laire permettant d’avoir Io au bord du champ quand Jupiter est au centre. 

Les croix bleues représentent les mesures qui ont été 
faites. Les plages horaires sans données correspondent 
aux moments où Jupiter était sous l’horizon et aux 
moments où il faisait jour. 

On trouve ici que la distance angulaire maximale entre Io 
et Jupiter est d’environ 135 secondes d’arc et la période 
orbitale de Io est d’environ 42 heures. 

On peut directement utiliser la période, mais l’expression 
de la loi de Kepler utilise le rayon de l’orbite et non pas 
la distance angulaire. Il faut donc convertir cette distance 
angulaire maximale en distance. Pour cela, on utilise 
l’approximation des petits angles dans le triangle formé 
par la Terre, Jupiter et Io.

Avec les notations du schéma, on a alors :
θ ≈ a/d si θ est en radians.

Pour déterminer la distance de Jupiter, nous utilisons ici 
Stellarium.
•	 Vérifiez que la date dans le logiciel est bien celle du 

jour. Pour régler l’heure, utilisez le bouton sur le côté 
gauche de l’écran ou bien appuyez sur la touche F5. 

•	 Ouvrez la fenêtre de recherche d’objet avec le bouton 
sur le côté gauche de l’écran ou bien la touche F3. 
Tapez « Jupiter » et appuyez sur la touche Entrée. 

•	 Des informations au sujet de Jupiter s’affichent en 
haut à gauche, de l’écran. Parmi ces informations, il 
y a la distance entre l’observateur et Jupiter. Utilisez 
cette valeur pour d. 
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Un exemple de calcul
Avec une distance angulaire de 135" 
et une distance d d’environ 6,4×1011 m 
(moyenne sur la durée d’observation), 
on obtient :
a = d×θ = 6,4×1011×135/3600×π/180 
m = 4,2×108 m.
Avec T = 42 h = 151 200 s, on trouve : 

M = GT2
4r2a3 = 1,9×1027 kg soit 320 

fois la masse de la Terre.

Variations possibles

Avec un appareil photo

Afin d’estimer les distances 
angulaires, il est aussi possible 
d’utiliser un appareil photo au niveau 
de l’oculaire. En connaissant le 
champ de vue du télescope, on peut 
convertir un nombre de pixels dans 
l’image en un angle apparent.

Avec Stellarium

Dans le logiciel Stellarium, activez 
la fonction «  Mesure d’angle  ». 
Pour cela, allez dans le menu de 
configuration générale (touche `F2`). 
1. Allez dans l’onglet « Plugins ».
2. Sélectionnez « Mesure d’angle ». 
3. Cochez la case «  Charger 
au démarrage  » et redémarrez 
Stellarium.
4. Dans la barre d’outils en bas de 
l’écran, un bouton permet maintenant 
de passer en mode « Mesure 
d’angle ».
Cliquez sur le bouton « Mesure 
d’angle ». Maintenant, quand vous 

faites un cliquer-déplacer sur l’écran 
de Stellarium, une réglette apparaît 
avec la valeur de l’angle entre les 
deux extrémités du trait. 

Cherchez la planète Jupiter (touche 
F3, tapez ‘Jupiter’ et appuyez sur 
Entrée). Zoomez avec la molette 
de la souris et estimez la distance 
angulaire entre Jupiter et Io. Avancez 
dans le temps (accédez à la fenêtre de 
gestion de l’heure avec la touche F5) 
et répétez l’opération jusqu’à avoir 
suffisamment de données.

Déterminer la distance de 
Jupiter 
par l’observation

Dans l’expérience proposée ici, la 
distance entre la Terre et Jupiter 
est supposée connue. Il doit être 
cependant possible de déterminer 
cette distance par l’observation avec 
un spectrographe et une caméra. 

Nous donnons ici un aperçu de 
l’expérience, mais celle-ci pourrait 
faire l’objet d’un autre article à part 
entière.
1. Mesurez la période de rotation de 
Jupiter :
•	 repérez les détails à la surface de 

Jupiter ;
•	 observez Jupiter plusieurs fois au 

cours d’une nuit et notez comment 
ces détails se déplacent ;

•	 mesurez le temps qu’il faut pour 
qu’un nuage à la surface de Jupiter 
traverse le disque.

2. Mesurez la vitesse à l’équateur :
•	 enregistrez le spectre de Jupiter 

proche de l’équateur sur le bord 
est et sur le bord ouest ;

•	 comparez la position des raies 
entre les deux mesures ;

•	  appliquez le principe de l’effet 
Doppler pour obtenir la vitesse à 
l’équateur.

3. Obtenez la distance de Jupiter :
•	 le rayon de Jupiter est alors égal 

au rapport entre la vitesse en 
km/s et la vitesse angulaire en 
rad/s ;

•	 comparez le diamètre angulaire 
de Jupiter à son diamètre. 

Vous pouvez ensuite utiliser la valeur 
obtenue pour en déduire le rayon de 
l’orbite de Io.

Conclusion
J’espère vous avoir donné un aperçu 
d’une expérience simple à mener 
avec un télescope et du matériel 
facile d’accès.

n
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DÉTERMINER LA MASSE DU TROU 
NOIR SUPERMASSIF SGR A* AVEC LA 

3e LOI DE KEPLER
Frédéric Pitout et Natalie Webb, 

Observatoire Midi-Pyrénées / Université Toulouse 3 – Paul Sabatier, 
Institut de recherche en astrophysique et planétologie.

Tout indique qu’au centre de notre Galaxie, quelque part dans la constellation du Sagittaire, se trouve un trou noir 
supermassif nommé Sagittaire A* (Sgr A*). Dans cette activité, nous proposons d’utiliser le mouvement de S2, une 

étoile en orbite autour de ce « monstre » invisible, pour évaluer la masse du trou noir.

Au milieu des années 1990, des astronomes ont eu 
la surprise de découvrir que dans la direction du 

centre galactique, dans la constellation du Sagittaire, 
des étoiles semblaient être en mouvement alors que 
rien dans les environs n’était visible1. Avec le temps, 
le mouvement de ces étoiles s’est précisé  : il s’agissait 
bien d’un mouvement de révolution mais autour de… 
rien  ! Ce «  rien  » fut un temps appelé matière sombre 
mais la masse, responsable de ces mouvements d’étoiles, 
semblait suffisamment localisée pour qu’il s’agisse d’une 
masse colossale, celle d’un trou noir supermassif nommé 
Sgr A*. Cette découverte a valu la moitié du prix Nobel 
de physique 20202 à Reinhard Genzel et Andrea Ghez 
(l’autre moitié est revenue à Roger Penrose pour des 
travaux plus théoriques sur les trous noirs). 

Mouvement de l’étoile S2
Ces 20 dernières années, les positions des étoiles gravitant 
autour de Sgr A* ont été plus ou moins régulièrement 
relevées par différents instruments. En particulier, l’étoile 
S2 est intéressante car sa période est suffisamment 
courte pour être suivie. Les scientifiques ont directement 
accès à deux informations concernant son mouvement : 
sa position astrométrique dans le «  plan  » du ciel (en 
ascension droite et déclinaison) et sa vitesse radiale (en 
km/s) déduite du décalage spectral par effet Doppler-
Fizeau (par ex. Cahiers Clairaut n° 161) de certaines raies 
d’absorption, dont on connaît la longueur d’onde au repos 
(λ0). 
La première ne pose pas de problème particulier, il 
« suffit » de relever la position de l’étoile S2 régulièrement 
et, pour être plus précis, ôter les effets relativistes dus au 
trou noir (la courbure de la lumière induit une différence 
entre position relevée et position réelle).
Pour ce qui est de la vitesse radiale de S2, une raie 
d’absorption utilisée pour l’évaluer est la 3e raie de 

1   https://www.youtube.com/watch?v=k7xl_zjz0o8
2   www.nobelprize.org/prizes/physics/2020/press-release/

Brackett de l’hydrogène (Brγ) à λ0 = 2,166 12 μm. Elle 
présente l’avantage d’être dans le domaine infrarouge, 
donc observable malgré l’opacité (dans le visible) de 
la région du centre galactique. À titre d’exemple, nous 
utiliserons ici de telles observations menées avec le 
télescope Subaru et un spectrographe infrarouge par une 
équipe menée par Shogo Nishiyama (2018). Les auteurs 
ont procédé à 3 séries de mesures en mai 2014, août 2015 
et mai 2016. La figure 1 montre leurs mesures.
Les courbes rouges sont des ajustements de la raie 
d’absorption Brγ. 

Fig.1. Portions des spectres (mesurés en 2014, 2015 et 2016, et 
moyennés) mettant en évidence la raie d’absorption Brγ. Un ajus-
tement analytique est indiqué en rouge (Nishiyama et al., 2018).

Les lois de Kepler
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À partir de la figure 1, on peut mesurer les longueurs 
d’ondes (λ) correspondant aux minima des raies et 
déduire les vitesses radiales (vr) correspondantes :

vr = c
m0
mS2,obs - 1T Y

où c est la vitesse de la lumière dans le vide, 3×108 m/s. 
Il ne faut pas oublier que les vitesses que l’on va 
obtenir incluront des composantes indésirables qui ont 
des causes autres que le mouvement propre de l’étoile 
observée, comme le mouvement de rotation de la Terre, 
de révolution de la Terre autour du Soleil et de révolution 
du Soleil autour du centre galactique. Il faut donc prendre 
en compte ces mouvements dans un repère idéal de repos 
nommé étalon de repos local ou Standard Local of Rest 
(SLR) en anglais. La vitesse de ce référentiel par rapport 
à l’observateur – appelons-la vSLR  – peut être calculée 
en ligne (par exemple : https://www.gb.nrao.edu/cgi-bin/
radvelcalc.py).

La vitesse radiale corrigée de l’étoile S2 aura alors pour 
expression : vr

COR = vr - vSLR

Les longueurs d’ondes mesurées et vitesses radiales 
correspondantes sont reportées dans le tableau 1.

Date et heure
(UTC)

λS2,obs

(μm)
vr

(km/s)
vSLR

(km/s)
vr

COR

(km/s)

19 mai 2014, 
10:59:48 2,1696 482 -24 506

21 août 2015, 
06:36:40 2,1725 884 16 868

19 mai 2016, 
13:06:57 2,1739 1078 -25 1103

En répétant l’exercice plusieurs fois, comme l’ont fait 
les astronomes ces 30 dernières années, on obtient les 
positions et vitesses radiales que montre la figure 2. On y 
trouve dans le panneau de gauche, la position de l’étoile 
S2 dans le ciel en fonction de son ascension droite et de 
sa déclinaison.

Fig.2. Combinaison de différentes mesures au cours du temps de la position et de la vitesse radiale de l’étoile S2. Les positions astro-
métriques en seconde d’arc sont données relativement à la position du trou noir Sgr A*. (Abuter et al., 2018).

Tableau.1. Tableau récapitulatif des mesures de longueurs d’onde 
et vitesses radiales.

Les lois de Kepler
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Avec les dates de chaque mesure on peut se faire une 
idée de la période de révolution, de la vitesse de l’étoile 
ainsi que de la position du périastre, et donc de la position 
approximative de Sgr A*. Mais attention  : cette figure 
est en fait la projection de l’orbite réelle sur le plan du 
ciel. Pour s’en convaincre, il suffit de regarder la vitesse 
radiale de l’étoile, c’est-à-dire la composante qui nous 
indique si l’étoile s’approche ou s’éloigne de nous.
 
Le panneau en haut à droite de la figure 2 montre la 
vitesse radiale mesurée. On voit que les mesures colorées 
en mauve et violet sur la partie gauche de l’ellipse 
correspondent à des vitesses négatives, donc l’étoile 
s’approche de nous. En revanche, la partie droite de 
l’ellipse comporte des mesures en vert, correspondant à 
des vitesses radiales positives, donc l’étoile s’éloigne de 
nous.

Détermination des paramètres 
d’orbite de l’étoile S2

La période de révolution de l’étoile S2 s’obtient assez 
facilement à partir de la figure 2 : par exemple, nous 
constatons que la vitesse radiale (panneau en haut à 
droite) passe par deux maxima en 2002 et 2018. La 
période de révolution T de S2 est donc d’environ 16 ans. 
Évidemment, nous faisons ici une hypothèse importante : 
que l’orbite est bien képlérienne et que ces deux maxima 
correspondent au même point de l’orbite de l’étoile. Nous 
verrons que rigoureusement ce n’est pas le cas mais que 
c’est une bonne approximation pour notre exercice.

Déterminer le demi-grand axe de l’ellipse décrite par 
S2 est moins simple pour deux raisons essentiellement. 
D’abord, nous l’avons évoqué, l’ellipse que semble 
décrire l’étoile dans le ciel est une projection de l’ellipse 
réelle. Nous devrions donc reconstruire l’orbite réellement 
décrite par l’étoile. C’est possible3 mais nous ne ferons 
pas ici. Nous nous contenterons de raisonner sur l’ellipse 
apparente, étant entendu que nous sous-estimerons le 
demi-grand axe vrai et, la période de révolution de S2 
étant connue, nous obtiendrons in fine une limite basse de 
la masse du trou noir. Par ailleurs, pour convertir tout écart 
angulaire (ce que l’on mesure) en termes de longueur, il 
nous faut la distance entre le centre galactique et nous les 
observateurs. Cette distance est notée traditionnellement 
R0.

3   Il existe une méthode géométrique pour retrouver le grand axe, dé-
crite par Lucienne Gouguenheim dans son ouvrage Méthodes de l’astro-
physique page 240. Vous la trouverez page 25. 

En pratique, les chercheurs posent toutes les équations 
dont ils disposent, contenant toutes les inconnues (demi-
grand axe, excentricité, inclinaison, masse, distance, etc.) 
et résolvent le système pour obtenir toutes les valeurs. Ici, 
pour éviter les difficultés et par souci de gain de temps, 
nous allons supposer connu R0 (R0 = 8,13 kpc, voir Abuter 
et al., 2018).

Sur la figure 2 (à gauche), nous mesurons le grand axe à 
0,195 seconde d’arc. Cet écart angulaire, à la distance de 
8,13 kpc, correspond à un demi-grand axe a = 1,19 1014 
m.

Si αr est l’angle en radian, a = d×αr
d = 8,13 kpc = 8 130×3,086×1016 m = 2,51×1020 m
a = 0,195/2/3 600×π/180×2,51×1020 m = 1,19×1014 m

Détermination de la masse du trou 
noir Sgr A*

Maintenant que nous avons estimé la période de révolution 
T et le demi-grand axe a, nous pouvons appliquer la 3e loi 
de Kepler pour obtenir la masse du trou noir M•.

M: = GT2
4r2a3

Avec G = 6,67×10-11 N m2 kg−2 la constante gravitationnelle. 

Nous obtenons une masse M• de 3,87 × 1037 kg, soit 1,97 
× 106 masses solaires.

T = 16×365,25×24×3600 s = 5,05×108 s 
M• =  4×π2×(1,19×1014)3/(6,67×10-11×(5,05×108)2) 
      = 3,87×1036 kg
Masse du Soleil : MS = 1,99×1030 kg d’où 
M• = 1,97×106 MS

Notons que les mesures les plus récentes donnent un 
demi-grand axe de 0,125 seconde d’arc et une masse de 
4,10 x 106 masses solaires (Abuter et al., 2018).
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Épilogue sur les effets relativistes : 
précession de Schwartzschild et 
décalage vers le rouge
Tout comme Mercure autour du Soleil, l’orbite de S2 
subit un effet de précession de sorte que le grand axe 
de son orbite change d’orientation dans le plan orbitale 
avec le temps et par conséquent, l’orbite n’est pas fermée 
(figure 3). 

Une partie de cette précession est prévue par la 
mécanique classique, l’autre contribution est expliquée 
par la théorie de la relativité générale, c’est la précession 
de Schwarzschild. Les mesures menées avec l’instrument 
GRAVITY installé sur le Very Large Telescope (VLT) au 
Chili ont permis de vérifier cet effet.
Un autre effet décrit par la relativité générale est le 
décalage vers le rouge de la lumière de l’étoile provoqué 
par la masse du trou noir. Ce décalage, qui n’est pas 
imputable au mouvement de l’étoile, a lui aussi été 
mesuré : quand l’étoile S2 est au plus proche du trou noir, 
son spectre d’émission se décale vers le rouge.

n
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Fig.4. Cette vue d’artiste montre la trajectoire de l’étoile S2 lorsqu’elle passe très près du trou noir supermassif au centre de la Voie lac-
tée. À mesure qu’elle se rapproche du trou noir, le champ gravitationnel très puissant entraîne un léger décalage de la couleur de l’étoile 

vers le rouge, un effet de la théorie de la relativité générale d’Einstein. 
Dans ce graphique, l’effet de couleur et la taille des objets ont été exagérés pour plus de clarté. Crédit : ESO/M. Kornmesser.

Fig.3. Vue d’artiste de la précession de Schwarzschild contribuant à 
une orbite ouverte (en bleu) comparée à une orbite purement ké-
plérienne fermée (en rouge). (Avec l’aimable autorisation de l’ESO)
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Reconstitution de l’orbite de l’étoile S2 autour de Sgr A*
Cette méthode est décrite dans l’ouvrage de Lucienne Gouguenheim, Méthodes de l’astrophysique, p 241

Fig. 1. L’orbite observée est l’image projetée d’une ellipse (dont le foyer F est Sgr A*) sur un plan perpendiculaire à 
la ligne de visée. 

Fig. 2. Le centre O de l’ellipse est conservé, il est donc projeté au centre O’ de l’orbite observée. 
On connaît O’, projeté du centre de l’ellipse et E’, projeté du foyer. 
On peut donc tracer le projeté du grand axe. 
Les projections conservant les rapports, on peut calculer l’excentricité de l’orbite : 
e = OF/OA = OF’/OA’ = 0,89.

Fig. 3. Les projections conservent les milieux et les parallèles. On peut tracer le projeté du petit axe de l’orbite en 
prenant les milieux de « cordes » parallèles au grand axe. 

Fig. 4. Une ellipse peut se tracer en « aplatissant » un cercle par une transformation appelée « affinité » : on doit avoir 
IM/IP = b/a = 1 - e2 .

Fig.1. Fig.2. Fig.3. Fig.4.

Fig. 5. Inversement, à partir d’une ellipse, on peut construire le 
cercle principal point par point en multipliant IM par 1/ 1 - e2 . 
Avec e = 0,89, on trouve 2,2.
En multipliant IM’ par 2,2, on obtient les points du projeté du 
cercle principal, tracé en vert ici.
L’ellipse verte est le projeté du cercle principal, son grand axe 
est donc égal au diamètre du cercle principal, lui-même égal au 
grand axe de l’orbite réelle. En mesurant sur la figure et avec 
l’échelle en déclinaison, on trouve 0,25".
Connaissant la distance 8,13 kpc, on peut calculer le demi grand 
axe. On obtient : a = 1,52×1014 m.
Cette figure permet également de calculer l’inclinaison de l’or-
bite : comme l’ellipse verte est le projeté du cercle principal, le 
rapport de son petit axe sur son grand axe donne le cosinus de 
l’inclinaison. 
On obtient cos i = 0,685 et i = 46,7° (on trouve 133,7° dans la 
littérature – une valeur supérieure à 90° indiquant une révo-
lution rétrograde – ce qui correspond à 46,3°, très proche du 
résultat trouvé ici).

Fig.5.

Il ne reste plus qu’à effectuer les calculs comme dans l’article pour trouver la masse du trou noir.
On trouve M• = 8,16×1036 kg soit 4,1×106 MS.

Fig.6. Reconstitution de l’orbite de l’étoile S2 autour de Sgr 
A*. On obtient une ellipse d’excentricité 0,89 et de demi 
grand axe 1,52×1014 m.

Pierre Causeret
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ARTICLE DE FOND

INTRODUCTION À L'ÉQUATION 
DE KEPLER

Daniel Descout, Deuil-la-Barre

Comment savoir où se trouve une planète sur son orbite à un instant donné ? Le problème n’est pas simple, il faut 
pour cela résoudre une équation établie par Kepler pour les orbites elliptiques. Après avoir présenté cette équation à 

partir de la longueur des saisons, quelques méthodes de résolution sont proposées.

Photographiée en 1990 par la sonde Voyager-I située au-
delà de l’orbite de Neptune, la Terre apparaît, selon le mot 
de Carl Sagan, comme « un grain de poussière suspendu 
dans un rayon de soleil » (figure 1). Habitants de ce « point 
bleu pâle  », nous essayons, depuis des générations, de 
comprendre les détails de la course apparente du Soleil 
devant les autres étoiles.

Johannes Kepler, au début du XVIIe siècle, a fait un pas 
de géant en proposant ses trois lois, qui précisent le 

mouvement des planètes dans un modèle héliocentrique. 
C’est le dossier de ce numéro des Cahiers Clairaut.
Il a aussi proposé une équation éponyme qui permet de 
répondre à deux problématiques. D’une part, connaissant 
l’orbite d’une planète autour du Soleil, et la position de 
la planète à une date donnée, en déduire sa position 
à une date quelconque. D’autre part, avec les mêmes 
prémisses, et réciproquement, en déduire la date du 
passage de la planète à une position quelconque de son 
orbite. 
Après une introduction de l’équation de Kepler à partir 
de la comparaison des durées des saisons terrestres, nous 
aborderons quelques méthodes de résolution de cette 
équation. Les applications astronomiques de l’équation 
de Kepler feront l’objet d’un article distinct dans un 
prochain numéro.

De l’inégalité des durées des saisons astro-
nomiques

La détermination des saisons est le résultat des 
observations astronomiques de la position du Soleil sur la 
voûte céleste vue depuis la Terre. La course du centre du 
Soleil définit l’écliptique. Les intersections de l’écliptique 
avec l’équateur céleste définissent les deux équinoxes. 
Les deux solstices correspondent aux instants de l’année 

pour lesquels la déclinaison du Soleil est stationnaire. 
Ces définitions étant données, il suffit de connaître 
la longitude écliptique du Soleil pour déterminer les 
quatre événements fixant le début de chaque saison 
astronomique  : longitudes zéro et 180 degrés (ou π 
radians) pour les équinoxes de printemps et d’automne, 
90 degrés (ou π/2 radian) et 270 degrés (ou 3π/2 radians) 
pour les solstices d’été et d’hiver. Ensuite, le passage d’un 
référentiel géocentrique à un référentiel héliocentrique 
permet de situer ces quatre événements comme les 
passages à quatre positions remarquables de la Terre sur 
son orbite autour du Soleil (événements représentés sur 
la figure 2).

Les durées des saisons astronomiques de l’année 2022 sont 
issues des données du calculateur de l’IMCCE1 (notation 
décimale en jours, notés j) :
Hiver 2022 (entre S1 et E1)  : 88,982 j (durée notée Th 
ensuite) ;
Printemps 2022  (entre E1 et S2) : 92,736 j (durée notée 
Tp ensuite) ;
Été 2022 (entre S2 et E2)  : 93,660 j (durée notée Té 
ensuite) ;
Automne 2022 (entre E2 et S1) : 89,864 j (durée notée Ta 
ensuite).

1   https://promenade.imcce.fr/fr/pages4/439.html

Fig.1.

Fig.2.

Les lois de Kepler
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L’arrondi au millième de jour correspond à une 
approximation de l'ordre de la minute.
Les durées des saisons sont inégales, variant de 89 jours 
pour la plus courte (l’hiver) à plus de 93 jours pour la plus 
longue, l’été. Ces différences sont dues à la variabilité de 
la vitesse orbitale de la Terre autour du Soleil, associée 
à la variabilité de la distance Terre - Soleil (modélisée 
par Johannes Kepler, et exprimée dans ses deux premières 
lois ; 1609, Astronomia nova).

La durée des saisons et les lois de Kepler

Première loi  : les planètes du Système solaire ont des 
orbites planes elliptiques dont le Soleil occupe un foyer.
Deuxième loi : le mouvement d’une planète sur son orbite 
se fait à vitesse aréolaire constante2.

La figure 3 illustre les deux premières lois de Kepler. Le 
plan orbital (écliptique) est un plan considéré comme fixe 
par rapport aux étoiles extérieures au Système solaire. 
La constance de la vitesse aréolaire de la Terre peut être 
traduite par l’égalité des rapports 

A1 / (t’1 – t1) = A2 / (t’2 – t2) = A / T

Pour simplifier, nous admettrons l’égalité de la période 
orbitale T et de l’année tropique Ttr sous le même vocable 
« année » et dont la valeur approchée est celle de l’année 
julienne de 365,25 jours.

L’application de la loi des aires à la figure 2 permet 
d’affirmer, en appelant S le centre du Soleil, foyer de 
l’ellipse orbite de la Terre, que les durées des saisons 
sont proportionnelles aux aires des secteurs d’ellipse  : 
A(S1SE1)/Th = A(E1SS2)/Tp 
= A(S2SE2)/Té = A(E2SS1)/Ta = A(ellipse)/Ttr .

En vue de l’introduction de l’équation de Kepler (ci-après), 
il est commode de simplifier l’analyse en recherchant 
une configuration de symétrie, dans laquelle la ligne des 
solstices est confondue avec l’axe des apsides.

2   Vitesse aréolaire : vitesse de balayage d’une aire par un rayon (wik-
tionnaire).

Or, la « ligne des équinoxes » (E1SE2) effectue, par rapport 
aux étoiles lointaines, une très lente rotation dans le plan de 
l’écliptique, dans le sens rétrograde : c’est le phénomène 
de précession des équinoxes. La «  ligne des solstices » 
(S1SS2), perpendiculaire à la ligne des équinoxes, est 
animée du même mouvement de précession, à raison de 
50,29 secondes d’arc par an, soit environ 1,40 degré par 
siècle. 
En nous décalant vers le passé de quelques siècles, nous 
trouvons la configuration recherchée pour les années 
particulières situées vers le milieu du XIIIe siècle de notre 
ère  (figure 4). Nous choisissons d’appliquer la loi des 
aires pour l’année 1238 (calendrier julien). 

Par raison de symétrie, les aires A(S1SE2) et A(S1SE1) 
sont égales ; donc, en théorie, les durées de l’automne et 
de l’hiver sont égales.
De même, les durées de l’été et du printemps sont égales 
en théorie car A(S2SE2) = A(S2SE1). 	
La consultation des éphémérides permet de vérifier ces 
égalités :
Th = 89,333 j ; Tp = 93,291 j  ; Té = 93,285 j  et Ta = 89,329 j .
Soit  : Tp  –  Té  =  0,006 j ; Th  –  Ta  =  0,004 j (écarts de 
quelques minutes).
Entre les deux solstices d’hiver consécutifs, l’intervalle 
est de 365 jours 5 heures 43 minutes.

Encadré 1 
Notations et propriétés de l’ellipse (figure 5)

Le grand axe de symétrie est [GG’], de longueur 2a.
Le petit axe de symétrie est [BB’] de longueur 2b. 
Les foyers F et F’ sont sur [GG’] et équidistants du centre O 
de l’ellipse. On note 2c ( = FF’) la distance focale. 
Par définition, l’excentricité e de l’ellipse est le rapport 
c/a. L’excentricité e est comprise entre zéro (inclus ; cas du 
cercle) et 1 (exclu ; cas de la parabole).

Fig.3.

Fig.4.
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Pour tout point P sur l’ellipse : PF + PF’ = 2a.	   
Si P est en B, BF + BF’ = 2a et par symétrie, BF = a. 
On peut établir plusieurs relations entre a, b, c et e :
a² = b² + c² ; b² = a²(1-e²) ou b = a·√(1 - e²).

La perpendiculaire au grand axe passant par F coupe 
l’ellipse en deux points H et H’. La longueur FH est le 
paramètre de l’ellipse, noté p.
Dans le triangle HFF’ : p² + (2c)² = HF’² ; 
or HF’ = 2a – p ; donc : p = a·(1 – e²), et p = b²/a.

L’équation polaire de l’ellipse, avec FP notée r et l’angle 
(FX, FP) noté s est : r = p/(1 + e·cos s) 

On passe d’une ellipse à un cercle par une transformation 
appelée affinité : x est inchangé et y est multiplié par a/b. 
Ainsi le point P est transformé en K avec NK = NP×a/b.
Si x est inchangé et y est multiplié par a/b, les aires 
seront également multipliées par a/b.
Inversement, on passe du cercle à l’ellipse par une affini-
té de rapport b/a. Les aires étant aussi multipliées par b/a, 
l’aire du disque pa² devient pab.
L’aire A de la portion de plan intérieure à l’ellipse est le 
produit πab .

Fig.5.

Introduction de l’anomalie excentrique (E) 
d’un point sur une ellipse

La superposition des figures 4 et 5 place le Soleil en F, les 
équinoxes E1 et E2 aux points H et H’ de l’ellipse, G est le 
périhélie et G’ est l’aphélie de l’orbite.
La durée (notée Ta+h) qui s’écoule de l’équinoxe d’automne 
à l’équinoxe de printemps suivant ; elle est la somme des 
durées de l’automne et de l’hiver : Ta+h = Ta + Th .
De la loi des aires, il découle : 

A(GHFH’G)/Ta+h = A(ellipse)/T ; ou 
A(GHFH’G)/ A(ellipse) = Ta+h/T.

Ce rapport, noté R(e) ensuite, est une fonction de 
l’excentricité e de l’ellipse, considérée comme une 
variable. Si e = 0, le foyer F est confondu avec O, l’ellipse 
est un cercle, les saisons ont la même durée, et R = 1/2. 
Si e est proche de l’unité (cas des comètes), le foyer F est 
proche de G, et R est proche de zéro.

Établissement de la relation R(e) (figure 6) :
L’aire A(GHFH’G) est celle de la zone en jaune.
Par l’affinité de rapport a/b, (encadré 1) le segment [HH’] 
est prolongé et devient la corde [KK’] du cercle. Et 
A(GKFK’G) / A(GHFH’G) = a/b.
Il est possible d’exprimer simplement l’aire de la portion 
de disque comprise entre l’arc KGK’ et la corde KFK’ en 
fonction de l’angle au centre GOK, noté E. Cet angle 
(repère orange) est l’anomalie excentrique associée au 
point H de l’ellipse. Dans l’intervalle de définition de e, E 
est compris entre zéro (e ≈ 1) et π/2 radian (e = 0). 
La longueur de la corde [KK’] est égale à 2·p·a/b, soit 2b 
(car p = FH = b2/a, d’après l’encadré 1)

De manière évidente : A(GKFK’G) 
= A(secteur circulaire OKK’) – A(triangle OKK’).
Or A(secteur circulaire OKK’) = (E/π)·A(disque) soit Ea² 
avec E en radians ; 
et A(triangle OKK’) = b·c ;
On trouve donc : A(GKFK’G) = E·a² – b·c 
Or b = FK = a·sin E , et c = OF = a·e ;
donc A(GKFK’G) = a²·(E – e.sin E) . 
Comme A(GHFH’G)  =  (b/a)·A(GKFK’G)  et avec 
A (ellipse) = π·a·b, on trouve finalement :
	 R(e) = (1/π )·(E – e·sin E) (1).

Par définition  : R(e) = Ta+h/T.
Par symétrie (figure 4) : Th = Ta = Ta+h/2.
Donc :	 E – e·sin E = 2·π ·Th/T  (en radians).
Cette relation, entre la durée Th d’une saison terrestre 
(hiver) et l’anomalie excentrique E du point équinoxial 
E1 (de l’an 1238), peut être généralisée. C’est l’objet du 
paragraphe suivant.

On peut vérifier la formule (1) avec la valeur de e actuelle :
e = 0,016710  (donnée J  2000)  ; cos E = c/a = e d’où 
E ≈ 1,554 1 (rad) et R(e) ≈ 0,489 4

Fig.6.
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Par ailleurs, le rapport Ta+h/T, calculé numériquement avec 
les durées des saisons de 1238, donne : R(e) = 0,489 2. 
La comparaison des deux rapports suppose que 
l’excentricité e soit constante sur plusieurs siècles. On 
l’admettra3. La différence relative entre ces deux rapports 
est inférieure à 5·10-4.

L’équation de Kepler

Après avoir introduit précédemment l’anomalie 
excentrique E d’un point H dans un cas particulier, nous 
étudions ici le cas général. La Terre est en un point P 
quelconque de son orbite elliptique (en bleu sur la figure 
7). P est repéré par l’angle polaire s(t) (angle (FX, FP)), 
et r(t) (= FP), fonctions du temps.
L’angle s(t) est aussi nommé anomalie vraie de la planète 
P.
Soit K l’intersection du prolongement de [NP] au-delà de 
P avec le cercle de centre O et de rayon a. 
L’anomalie excentrique E(t) est définie comme dans le 
paragraphe précédent. C’est l’angle au centre GOK, 
fonction du temps liée à s(t).
La symétrie invite à se limiter à une demi-orbite, par 
exemple du passage par le périhélie G (avec s(0)  =  0) 
jusqu’au passage par l’aphélie G’ (avec s (T/2) = π (rad)). 
La vitesse aréolaire vaut π·a·b/T.

Comme préalable, on introduit un marqueur graphique de 
l’écoulement du temps. Pour cela, on ajoute à la figure 
6 le cercle (rouge) de centre F (position du Soleil) et 
de rayon a, sur lequel se déplace un astre fictif (J) avec 
une vitesse angulaire constante. La période du mobile 
J est égale à T, la même que celle de la planète P. Son 
mouvement est synchronisé avec le mouvement de 
la planète P (passages sur l’axe OX aux instants t = 0, 
t = T/2, t = T, etc.). La vitesse aréolaire de l’astre J est 
constante et vaut π·a²/T.	

3   https://planet-terre.ens-lyon.fr/ressource/milankovit-
ch-2005.xml

J est repéré par l’angle au centre (FX, FJ), noté M, et 
nommé anomalie moyenne de la planète P. 

M(t) = 2π·t/T
L’équation de Kepler est la relation suivante entre les 
anomalies E et M (en radians) : 	

E – e.sin E = M (démonstration encadré 2).
.
Encadré 2 (figure 7)

Démonstration de l’équation de Kepler
On exprime d’abord d’une première manière l’aire du sec-
teur elliptique FGP (colorié en cyan), notée A(t). D’après la 
loi des aires : A(t) = p·a·b·t/T.
On exprime ensuite d’une seconde manière l’aire du même 
secteur elliptique FGP, en fonction d’aires de triangles et de 
secteurs circulaires.
Le rapport d’affinité est b/a, donc :
 A(t) = (b/a)·A(FGK) = (b/a)·[A(OGK) – A(OFK)]. 
A(OGK) = pa²×E/2p = E·a²/2.
A(OFK) = OF×NK/2 = c×(a·sin E)/2 = e·a²·(sin E)/2.
Donc : A(t) = (b/a)·(a²/2).(E – e·sin E).
L’égalité des deux expressions de A(t) donne l’équation de 
Kepler : E – e·sin E = 2p·t/T = M(t)  (c.q.f.d.).

L’équation de Kepler permet en principe de répondre aux 
deux problématiques posées au début de l’article.
Dans le premier cas (l’inconnue est la position de la planète 
à une date donnée), la grande difficulté vient du fait que 
la relation entre E et M(t) est une équation transcendante. 
Dans le second cas (l’inconnue est la date de passage de la 
planète à une position donnée), la résolution de l’équation 
ne présente pas de difficulté particulière.
La connaissance de E permet d’établir les valeurs de r(E) 
et s(E) (relations dans l’encadré 3).
Des méthodes de résolution ont été proposées au cours de 
l’histoire, par Kepler, Newton, Lagrange, et par Halley 
pour les comètes, et sont encore développées à l’époque 
moderne avec l’aide des calculateurs.
Encadré 3            Calcul de r et s
Expression de r(E) 
Dans le triangle FNK (figure 7) :
    NP= r·sin s = (b/a)·NK = b·sin E.
Et NF = r·cos s = ON – OF = a·cos E – a·e 
          = a·(cos E – e).
Donc : r² = NF² + NP² = a²·(cos E – e)² + b²·sin² E.
Comme b² = a²·(1 – e²), après simplification, on trouve 
(r > 0) : 	r(E) = a·(1 – e·cos E). 

Expressions des fonctions circulaires de s(E) :
En remplaçant r par son expression r(E) dans la formule  cos 
s = (a/r).(cos E – e) , on trouve :  :  
cos s = a/r·(cos E – e)
cos s = (cos E – e)/(1 – e·cos E) ;
sin s = b sin E /r = (b/a)·(a/r)·sin E
sin s = [√(1 – e²))·sin E]/(1 – e·cos E).
Avec ces deux relations, et sachant que 
tan s = 2·t/(1 – t²), avec t = tan(s/2), on montre que :
	 tan(s/2) = ε·tan(E/2),
 avec ε = √(1 + e)/(1 – e). 		

Fig.7.
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Résolution de l’équation de Kepler pour les 
ellipses de faible excentricité (e << 1)

Forme analytique approchée de E(M) 
La fonction f(t) = M est périodique et impaire.
 Il suffit de l’étudier sur [0, T/2].
En partant de la forme E = M + e·sin E, on calcule 
sin E = sin (M + e·sin E) 
= sin M·cos(e·sin E) + cos M·sin(e·sin E).
Comme sin E est compris entre 0 et 1, e·sin E est considéré 
comme très inférieur à 1, et l’on prend les équivalents : 
sin x ≈ x (en radians) et cos x ≈ 1, pour 0 < x << 1. Alors : 
sin E ≈ sin M + e·cos M·sin E .
Il s’ensuit une expression approchée de sin E : 		

sin E ≈ (sin M)/(1 – e·cos M).
De même : cos E = cos (M + e·sin E)  
= cos M·cos(e·sin E) – sin M·sin(e·sin E).
Une première forme approchée de cos E est donc :

cos M – e·sin M·sin E ; ou encore :
[cos M·(1 – e·cos M) – e·sin²M]/(1 – e·cos M).

On obtient donc :
cos E ≈ (cos M – e)/(1 – e·cos M)

Et en combinant les deux formes approchées : 		
tan E ≈ (sin M)/(cos M – e)

À partir des expressions précédentes, en multipliant 
numérateur et dénominateur par (1  +  e·cos  M), et en 
négligeant les termes en e² , on trouve d’autres équivalents, 
par exemple :

sin E ≈ (sin M)·(1 + e·cos M).
En remplaçant dans l’équation de Kepler sin E par cette 
dernière expression approchée, on trouve finalement :	
E ≈ M + e·sin M. 
On remarque que la différence E  –  M est de l’ordre 
de grandeur de e. Comme M(t) est connu, l’anomalie 
excentrique E(t) apparaît ainsi comme une fonction 
explicite du temps. 

Formes analytiques approchées de r(M) et 
s(M) 

Pour trouver une expression simplifiée de r, on peut 
calculer la dérivée de E(M) par rapport à M  de deux 
manières différentes :
En dérivant l’équation de Kepler, par rapport à M, il 
vient : 	 dE/dM – e·cos E·dE/dM = 1
ou : 	 dE/dM = 1/(1 – e·cos E) = a/r
En dérivant E ≈ M + e·sin M : dE/dM ≈ 1 + e·cos M
En comparant les deux expressions, il vient : 

r(M) ≈ a/(1 + e·cos M).
ou r(M) ≈ a·(1 – e·cos M).
On peut comparer les angles s et M en calculant sin(s – M) 
afin d’exprimer s en fonction de M. 
En développant : 
sin(s – M) = sin s·cos M – sin M·cos s .
Dans les formules de cos s et sin s (encadré 3), on remplace 

E par son expression approchée en fonction de M, et on 
néglige tous les termes de degré supérieur à 1 en e. On 
trouve (après un calcul fastidieux) : sin(s – M) ≈ 2e.sin M. 
Et en confondant sin(s  –  M) avec son argument (en 
radians), finalement :	 s(M) ≈ M + 2e.sin M.

Cas de la Terre 
Dans un référentiel géocentrique, toutes les analyses 
précédentes restent valides, à condition de permuter les 
rôles de la Terre et du Soleil. La Terre est en F, le Soleil 
(vrai) est en P, et J est un Soleil fictif.
Si l’excentricité de l’orbite apparente du Soleil était nulle, 
le Soleil vrai serait constamment dans la même direction 
que le Soleil fictif. Comme l’excentricité de l’orbite est 
très faible devant l’unité, proche de 1/60 (e = 0,016 710 
actuellement), la direction d’observation du Soleil vrai 
(FP) au cours de l’année ne s’écarte jamais beaucoup de 
la direction (FJ) qui permet de suivre le Soleil fictif (sur 
l’écliptique). Cet écart angulaire est la valeur de l’angle 
(FP, FJ) (figure 7), soit : 

s(t) – M(t) = 2e·sin(2π·t/T) .

L’écart angulaire s(t) – M(t) entre le Soleil vrai et le Soleil 
fictif est l’une des deux composantes de l’équation du 
temps (voir Cahiers Clairaut n° 108 page 7). Il est de forme 
quasi sinusoïdale, avec une amplitude 2e = 0,033 42 (rad) 
soit 1,915°. Cette amplitude est associée à un décalage 
temporel d’environ 7 min 40 s pour les passages des deux 
soleils au méridien local d’un observateur terrestre (figure 
8 ; courbe en tirets bleus).

Fig.8. (crédit ASM1; https://media4.obspm.fr/public/res-
sources_lu/pages_ complements-ephemerides/equation-temps_

impression.html)

Les lois de Kepler



31

CC
 n

°1
77

 p
rin

te
m

ps
 2

02
2

Les lois de KeplerLes lois de Kepler

Résolution de l’équation de Kepler par la 
méthode éponyme

(voir le livre de Jean Meeus Calculs astronomiques à 
l’usage des amateurs SAF ; chapitre 20)

Méthode itérative  : étude de la suite {un} telle que  : 
un+1 = M + e·sin un (termes en radians).
Si cette suite admet une limite L, celle-ci vérifie  : 
L = M + e·sin L ; donc L = E.
Pour simplifier (choix arbitraires), on choisit :
e = 0,5 ; M = π/2 rad (t = T/4) et u0 = 0. 
Donc u1 = M = 1,570 796 ; 
Les termes suivants sont aussi arrondis à 10-6 près :
u2 = M + e·sin M = π/2 + 1/2 = 2,070 796 ; 
u3 = M + e·sin(u2) = M + e·sin(M + e·sin M) ; 
soit u3 = π/2 + (1/2)·cos(1/2) = 2,009 587 ;
u4 = π/2 + (1/2)·cos[(1/2)·cos(1/2)] = 2,023 429 ;
 et ainsi de suite : u5 = 2,019 445 ; etc.
et pour tout n ≥ 10, un ≈ 2,020 980.
Donc : E =  2,020 980 (rad) = 115° 48’.

La figure 9 illustre ce cas particulier.
En utilisant les formules de l’encadré 3, on calcule s et r.
Avec la relation entre tan(E/2) et tan(s/2), et pour 
ε = √(1 + e)/(1 – e) = √3, on obtient : s = 140° 11’.
Avec r/a = 1 – e·cos E, et cos E = – 0,435 131, on obtient :

r/a = 1,217 565.

Cette méthode est inadaptée au cas des comètes (e proche 
de 1).
Il existe d’autres méthodes de résolution de l’équation de 
Kepler qu’il serait trop long de développer ici (méthode 
de Newton Raphson, méthode de Lagrange). Vous les 
trouverez en complément de ce numéro dans l’article 
complet sur le site clea-astro.eu (cliquer sur CC177).

Les applications astronomiques de l’équation de Kepler 
consacrées à la comète de Halley et à la sonde Giotto 
feront l’objet d’un autre article dans un prochain numéro.

n

Les lois de Kepler dans les productions du CLEA

Dans les anciens numéros des Cahiers Clairaut (clea-astro.eu/archives).
(tous les numéros de plus de 3 ans sont en libre accès sur notre site clea-astro.eu, archives des CC).

Kepler confiné, CC 175 (2021), BERGON Myriam ; GUÉRARD Jean
Kepler .... au XXIe siècle (détermination de l’orbite de Mars), CC 156 (2016), BERTHOMIEU Francis
Kepler, les astres et la musique, CC 151 (2015), LE GARS Stéphane ; VIÈTE François
L’effet Doppler et les lois de Kepler, les clés de la découverte d’autres terres, CC 136 (2011), FERRARI Cécile
Construire l’orbite de Mars à la manière de Kepler avec un logiciel de géométrie, CC 127 (2009), CAUCHOIS 
Michel
Les orbites de la Terre et de Mars : la première loi de Kepler, CC 118 (2007), SANDRE Béatrice
Comment Kepler a déterminé l’orbite de la Terre autour du Soleil, CC 117 (2007), SIMON Blaise
Lecture de Kepler, CC 109, 110, 111 (2005), MIZAR K.
Les lois de Kepler en TS, CC 92 (2000), LAHELLEC Marie-Agnès
A propos de la troisième loi de Kepler, CC 42 (1985), PERRIN Robert
L’équation de Kepler, CC 26, 27, 28 (1984-85), TOULMONDE Michel

Sur le site du CLEA (www.clea-astro.eu), onglet lunap, cliquer sur Kepler 

Dans les hors-séries des Cahiers Clairaut
HS 10 : 1re et 2e loi avec Chiron (p 55), 3e loi (p 52)

Fig.9.
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ACTIVITÉS

LOIS DE KEPLER ET SIMULATIONS NUMÉRIQUES
Pierre Causeret, Esbarres

Voici trois activités numériques possibles liées aux lois de Kepler

1. Démonstration de la première loi
Il existe plusieurs manières de justifier la première loi à partir de la loi de la gravitation universelle  : de manière 
algébrique (voir page 26), géométrique (ce sera le sujet d’un prochain article dans les CC) ou par simulation numérique, 
ce que nous vous proposons ici. Avec l’informatique, il est facile de tracer la trajectoire d’une planète étape par étape en 
calculant sa position heure par heure ou minute par minute. Il est même possible de faire varier la loi de la gravitation 
pour voir quelle pourrait être alors la trajectoire d’une planète.

Principe de la programmation

1. On fixe les coordonnées du Soleil (XS ;YS).
2. On choisit les coordonnées de la planète au départ : M1 
(X1, Y1).
3. On fixe sa vitesse initiale : V1 (Vx, Vy). 
4. On fixe l’intervalle de temps ∆t  entre deux calculs.
5. On calcule la nouvelle position M2 de la planète animée 
d’une vitesse V (Vx, Vy) : 

X2 = X1+Vx*∆t ; Y2 = Y1+ Vy*∆t.
6. On trace le segment [M1M2].
7. On calcule la distance R du Soleil au point M.
8. On calcule l’accélération A = f(R) en fonction de la loi de 
la gravitation choisie.
9. On calcule ses composantes : 

Ax = –A*(X2-XS)/R ; Ay = –A*(Y2-YS)/R.
10. On calcule la nouvelle vitesse de la planète :

Vx = Vx + Ax*∆t ; Vy = Vy + Ay*∆t
11. X1 = X2 ; Y1 = Y2.
12. On retourne au point 5. 

Exemple de trajectoire obtenue avec une loi en 1/R²

Exemple de trajectoire obtenue avec une loi en 1/R Exemple de trajectoire obtenue avec une loi en 1/R3

Conclusion : seule une loi de la gravitation en 1/R² correspond aux orbites observées.

Complément : il est possible de calculer à chaque pas (ou pour une suite de plusieurs pas) l’aire balayée par le rayon 
vecteur. On s’aperçoit alors que la 2e loi de Kepler est vérifiée dans tous les cas. Elle ne dépend pas de la loi de la gra-
vitation mais uniquement du principe d’inertie et du fait que l’attraction donc l’accélération est dirigée vers le Soleil. 

Vous trouverez sur le site des exemples de programmation en langage Processing. 

Les lois de Kepler
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2. Tracé de l’orbite d’une planète

Si on veut tracer l’orbite d’une planète du Système 
solaire, il suffit de connaître son demi grand axe a et son 
excentricité e (voir tableau en fin d’article). Pour cela :

1. On calcule c (distance centre foyer) puis b (demi petit 
axe) sachant que e = c/a et que a² = b² + c² (voir par 
exemple encadré 1 page 27-28 ou CC 152 page 14).

2. On trace l’ellipse de demi grand axe a et de demi petit 
axe b.

3. On place le Soleil à un des foyers F, sur le grand axe 
et à une distance c du centre de l’ellipse.

Si on veut tracer les orbites de plusieurs planètes, il faut 
d’abord considérer qu’elles sont dans un même plan – 
ce qui est assez proche de la réalité – mais il faut aussi 
connaître la longitude du périhélie, λp, pour que les or-
bites soient correctement placées les unes par rapport aux 
autres.

Il faut alors ajouter une étape : 

4. On fait tourner l’ellipse d’un angle λp autour du So-
leil. 

Orbites de Mercure, Vénus, la Terre, Mars et Cérès. 
L’excentricité de chaque ellipse a été respectée. Le point 

vernal, origine des longitudes écliptiques, est à droite 
(programme en complément sur le site).

3. Mouvement d’une planète (animation)

Comment montrer le déplacement d’une planète ? Celle-ci doit suivre les deux premières lois de Kepler, donc parcourir 
une ellipse et changer de vitesse en suivant la loi des aires. Les formules sont alors plus compliquées. On peut les trou-
ver dans le livre de Jean Meeus Calculs astronomiques à l’usage des amateurs édité par la SAF et elles sont rappelées 
et expliquées pages 29-30 encadré 3. Nous prendrons les mêmes notations que dans l’article (voir figure 7 page 29). 
Pour une planète donnée, il faut connaître le demi grand axe a de son orbite, son excentricité e ainsi que la période T. 
Voici les différentes étapes, à adapter en fonction du logiciel que vous utiliserez :
1. On calcule c et b comme ci-dessus puis f = (1 + e)(1 - e)
2. On fixe l’instant t0 au départ de l’animation (ce peut être le nombre de millisecondes écoulées depuis l’ouverture du 
programme).
Une animation est une boucle où l’on va placer la planète. Pour chaque passage dans cette boucle : 
3. On calcule le temps t écoulé depuis t0, puis l’anomalie moyenne M = k×t/T. On choisira k pour que la planète se 
déplace à la vitesse désirée. 
4. On détermine l’anomalie excentrique E en résolvant l’équation de Kepler avec la méthode décrite page 31 : on prend 
E = M puis on répète un certain nombre de fois E = M + e*sin(E) (avec for ou while).
5. On calcule les coordonnées polaires (r,s) de la planète avec les formules :
r = a×(1-e×cos(E)) ; s = 2×atan(ε×tan(E/2)). 
6. On calcule les coordonnées cartésiennes de la planète, on efface son ancienne position et on la place à sa nouvelle 
position. 
7. On retourne à l’étape 4. 
Il est aussi possible de tracer l’orbite de la planète en fond.
Si on veut placer plusieurs planètes sur un même schéma, il faudra effectuer pour chacune des planètes une rotation 
d’angle λp autour du Soleil. 

Vous trouverez sur le site une animation de l’orbite terrestre réalisée avec le logiciel Processing, modifiable pour une 
autre planète. Si vous préférez utiliser un autre logiciel, vous pourrez adapter le programme. Mais il n’est encore pas 
possible de mettre des animations sur une feuille de papier. Vous trouverez ci-dessous plusieurs étapes de l’image 
animée.
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 Terre

Les huit premières images représentent huit positions de la Terre espacées de 4 semaines depuis le périhélie (situé 
en haut). Sur la dernière image, on a superposé les 8 positions et on a tracé le « rayon vecteur » pour essayer de faire 
apparaître les variations de vitesses. Mais elles ne sont pas évidentes. 

Mercure

Avec une excentricité de 0,387, les variations de vitesse de Mercure, représentée ici à intervalle d’une semaine, sont 
bien visibles. 

Données

Planète Mercure Vénus Terre Mars Cérès Jupiter Saturne Uranus Neptune Pluton
a (en ua) 0,387 0,723 1 1,523 2,768 5,203 9,537 19,19 30,07 39,45
e 0,206 0,007 0,017 0,093 0,076 0,048 0,054 0,047 0,009 0,25
λp (°) 77° 132° 103° 336° 153° 15° 93° 171° 45° 223°

Demi grand axe a, excentricité e et longitude du périhélie λp pour les 8 planètes du Système solaire 
ainsi que deux planètes naines, Cérès et Pluton.

n

Mots croisés : les lois de Kepler
Horizontalement
1. Cette loi relie les périodes de révolution aux grands axes des orbites. 
2. Proportion. Période de révolution. 
3. En Champagne. Matin anglais. Ce n’est pas la force.
4. Il a créé trois lois. 
5. Avant l’année. Siège d’orbites.
6. La fin du joug. Se fait pour ignorer.
7. Col sous un observatoire.
8. Pour Kepler, celui de la Terre était inscrit dans un dodécaèdre, celui 
de Mars dans un tétraèdre, celui de Jupiter dans un cube. Caisse.
9. Ce principe permet de justifier la 2e loi de Kepler. 
10. Dans un vallon. D’anglais. Marteau ou enclume.
11. Ce qu’a trouvé Kepler avec sa première loi.

Verticalement
1. Kepler a étudié celle de Mars pour établir sa première loi. 
2. Un mot qu’on utilise en énonçant la 2e loi de Kepler. Luron chamboulé.
3. Au milieu des lois de Kepler. Celui du grand axe est proportionnel au carré de la période. 
4. Il a justifié les lois de Kepler. A, B, C, D et maintenant E. 
5. Le songe de Kepler. Apogée.
6. En principe. Ils ont gagné un électron. 
7. On s’en passe souvent sur les mains ces temps-ci. Le demi grand axe l’est à la période par la 3e loi. 
8. C’est grâce à elle que Kepler a pu établir sa première loi. Il donne sa couleur à la précédente. 
9. Direction du lever du Soleil le 30 avril chez moi. Elle est maximale au périhélie d’après la deuxième loi de Kepler. 

Solution p. 48

Les lois de Kepler
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ARTICLE DE FOND

DES LOIS DE KEPLER À LA LOI 
DE GRAVITATION DE NEWTON

Béatrice Sandré

Dans les cours de mécanique, les lois de Kepler sont généralement établies à partir des lois de Newton et plus 
précisément du principe fondamental de la dynamique et de la loi de gravitation universelle. 

Mais Kepler (1571-1630) a vécu avant Newton (1643-1727) et a établi ses lois empiriquement grâce aux relevés de 
position très précis réalisés par Tycho Brahe.

Comme nous allons le montrer, c’est grâce aux lois 
empiriques de Kepler que Newton a pu établir les 
caractéristiques de la force de gravitation.
D’après Kepler, les planètes se déplacent dans des plans 
contenant le Soleil.
Le Soleil et une planète sont assimilés à deux points 
matériels S et P. Le mouvement de P est étudié dans le 
référentiel héliocentrique. La position de P est repérée 
dans le plan de son mouvement par ses coordonnées 
polaires r = SP  et i = ex,SPR W.

Les expressions de la vitesse et de l’accélération en 
fonction des coordonnées polaires r et θ sont rappelées 
dans l’encadré 1. Pour simplifier les écritures l’opérateur 
« dérivée par rapport au temps » de la variable x est notée 
ox .

Nous commencerons par utiliser la deuxième loi de 
Kepler ou loi des aires. Pendant un intervalle de temps 
élémentaire dt, l’aire balayée par le rayon vecteur SP est 
2
1 r2di .

La loi des aires peut donc s’écrire r2 oi = C  où C est appelée 
constante des aires.
Pour exprimer mathématiquement que C est constant 
au cours du temps, il suffit d’écrire que sa dérivée par 
rapport au temps est nulle soit :

2r or oi + r2 pi = 0

r 2 or oi + r piQ V = 0

r n’étant pas nul à chaque instant,
2 or oi + r pi = 0

La composante orthoradiale de l’accélération (encadré 1) 
est nulle et d’après le principe fondamental de la 
dynamique, 
la force subie par la planète est colinéaire à SP .

L’accélération est donc radiale et s’écrit 

a = pr- r oi2  (encadré 1).

La loi des aires permet de donner son expression en 
fonction de r et q sans faire intervenir le temps. Il suffit 
pour cela de remplacer l’opérateur dérivée par rapport

au temps dtd  par dtdi ×
di
d   soit r2

C ×
di
d  :

or = r2
C ×
di
dr =- C

di
du

en posant u = r
1

pr = dt
d or = r2

-C2

di2
d2u =- C2u2

di2
d2u

r oi2 = r3
C2 = C2u3

a =- C2u2
di2
d2u + uS X

L’équation de la trajectoire (r ou u en fonction de θ) 
permettra de déterminer l’accélération puis la force 
appliquée à la planète. 

La première loi de Kepler précise que l’orbite de la 
planète est une ellipse de foyer S.  L’équation d’une 
ellipse en coordonnées polaires peut s’écrire (encadré 2) :

SP = r =
1 + ecosi
p

di
du = p

-esini

di2
d2u = p

-ecosi

a =- C2u2 p
-ecosi + p

1 + ecosiT Y= p
-C2u2

= p
-C2 × r2

1

En appliquant le principe fondamental de la dynamique, 
Newton en déduit que le Soleil exerce sur la planète une 
force attractive (signe – dans l’expression de a), 
proportionnelle à r2

1 .

C’est la loi de la gravitation universelle.
 

Les lois de Kepler
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Encadré 1

Vitesse et accélération en fonction des 
coordonnées polaires 

vitesse de P dans le référentiel Sxy :
v = orer + r oiei

accélération de P dans le référentiel Sxy :
a = pr- r oi2Q Ver + r pi + 2 or oiQ Vei

La composante selon er  est appelée composante 
radiale ; la composante selon ei  est la composante 
orthoradiale.

Encadré 2

L’ellipse est l’ensemble des points M du plan tels que 
MF + MF’ est une constante.
F et F’ sont les foyers de l’ellipse.

Demi-grand axe de l’ellipse OA = OA’= a

Demi-petit axe de l’ellipse OB = b

Distance du centre au foyer OF = c

a, b et c sont liés par la relation a2 = b2 + c2

L’excentricité de l’ellipse est définie par  e = a
c

 . 
C’est un nombre compris entre 0 (cercle) et 1 (segment 
de droite).

La position d’un point M de l’ellipse est repérée par 
ses coordonnées polaires r et q définies sur la figure. 
L’origine q = 0 est choisie lorsque le point M est en A’ 
(périhélie de l’ellipse).

On démontre que si M appartient à l’ellipse, ses coor-
données sont liées par la relation :

r =
1 + ecosi
a 1 - e2Q V

=
1 + ecosi
p

p = a(1 - e2) est une constante caractéristique de l’el-
lipse appelée paramètre.

École d’été d’astronomie du CLEA
du 18 au 25 août au centre d’oxygénation de Gap-Bayard

Inscriptions sur le site
du 20 mars 2022 au 30 mai 2022

Les lois de Kepler
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OBSERVATION

Visibilité des planètes

Mercure sera facile à repérer le soir fin avril début mai 
(élongation maximale le 29/04). On la retrouve le matin 
mi juin mais assez basse.
Vénus est à observer le matin. Son élongation maximale 
a lieu le 20 mars, elle apparaît alors au télescope en 
quartier.  
Mars est visible le matin juste avant le lever du Soleil 
mais elle reste encore lointaine.
Jupiter était derrière le Soleil le 5 mars. Elle commence 
à être visible le matin. 
Saturne peut être observée le matin dans le Capricorne.

De nombreux rapprochements de planètes ont lieu au 
printemps, en particulier Mars Venus Saturne le matin du 
25 mars au 5 avril

Quelques évènements (heures légales

20/03 : équinoxe de printemps à 16 h 33 min. 
27/03 : passage à l’heure d’été.
03/04 (soir) : rapprochement Lune Uranus (<1°).
05/04 (matin) : rapprochement Mars-Saturne (0,3°).
22/04 : maximum des Lyrides (étoiles filantes).
29-30/04 (soir) : Mercure dans les Pléiades.
01/05 (matin) : rapprochement Vénus-Jupiter (<0,5°).
02/05 (soir) : rapprochement Lune Mercure.
16/05 (matin) : éclipse totale de Lune (voir p. suivante).
27/05 (matin) : rapprochement Vénus-Lune (≈ 1°).
29/05 (matin) : rapprochement Mars-Jupiter (0,6°).
21/06 : solstice d’été à 11 h 13.

Lune 
Nouvelle Lune : les 1/04, 30/04, 30/05. 
Pleine Lune : les 16/04, 16/05, 14/06

Document photocopiable
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L’éclipse totale de Lune du lundi 16 mai 2022 au matin
Une belle éclipse totale de Lune sera visible tôt le matin du 16 mai. En France métropolitaine, nous ne verrons que la 
première partie du phénomène, puisque le jour se lève pendant la totalité. 

Le principe d’une éclipse de Lune

Fig.1.

Une éclipse de Lune se produit lorsque la Lune traverse l’ombre de la Terre.
Un observateur astronaute situé dans la pénombre verrait la Terre ne cacher qu’une partie du Soleil. 
Dans l’ombre, le Soleil est totalement caché par la Terre.
Pourtant, un peu de lumière peut atteindre cette région  : il 
s’agit des rayons lumineux qui, en provenance du Soleil, 
frôlent la Terre et traversent la haute atmosphère (figure 2) ; 
ils sont alors déviés et en même temps rougis (l’atmosphère 
diffuse le bleu). C’est pour cette raison que la Lune n’est pas 
totalement noire et invisible au moment où l’éclipse est totale. 
Elle apparaît d’une couleur rouge plus ou moins sombre.

Fig.2

Les horaires de l’éclipse du 16 mai (en heure légale de Paris)
Entrée dans la pénombre (P1) : 3 h 32
Entrée dans l’ombre (O1) : 4 h 28
Début de la totalité (T1) : 5 h 29
Milieu de la totalité (M) : 6 h 12
Fin de la totalité (T2) : 6 h 54
Sortie de l’ombre (O2) : 7 h 55
Sortie de la pénombre (P2) : 8 h 51
Les prédictions des éclipses de Lune ont été réalisées par 
le service de calcul des éphémérides de l’IMCCE à travers 
son portail Système solaire (https://ssp.imcce.fr)                                

Fig.3.

Une éclipse de Lune se produit à la pleine Lune, quand Soleil et Lune sont situés à l’opposé l’un de l’autre. La Lune 
se couche donc au moment où le Soleil se lève. 
Les heures de lever de Soleil et de coucher de Lune le 16 mai en France métropolitaine sont comprises entre 5 h 46 
dans l’Est et 6 h 43 dans le Sud-Ouest. Suivant notre position en France, la fin de l’éclipse sera plus ou moins cachée, 
dans les lueurs de l’aube tout d’abord, puis quand la Lune passera sous l’horizon.
Outremer, l’éclipse sera entièrement visible depuis les Antilles et la Guyane, en milieu de nuit.

Comment l’observer et que verra-t-on ? 
Il faut tout d’abord prévoir d’observer depuis un site où l’horizon sud-ouest est dégagé. Le plus simple est d’observer à 
l’oeil nu ou aux jumelles. Le passage dans la pénombre est quasiment invisible à l’oeil nu. Le spectacle est intéressant 
à partir de 4 h 28, quand on voit la Lune entrer dans l’ombre de la Terre. De 5 h 29 à 6 h 54, la Lune est entièrement 
dans l’ombre et on devrait la voir d’une belle couleur rouge sombre. Malheureusement, le jour commencera à se lever 
en France et seuls les habitants du Sud-Ouest pourront voir une partie de la totalité. 

La Lune rentrant dans l’ombre de la 
Terre, telle qu’on la verra un peu avant 5 
h, dans la direction  sud-ouest. 

La Lune vers 6 h au moment de la totalité. 
Elle risque d’être voilée par les lueurs du 
Soleil levant.

Vous trouverez des idées d’activités sur notre site clea-astro.eu à l’onglet Lunap puis Éclipse de Lune.

Document photocopiable
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AVEC NOS ÉLÈVES

BARNARD, LA VÉLOCE
Pierre Le Fur

Une comparaison instructive entre la détermination expérimentale de la vitesse de l’étoile de Barnard à 46 ans 
d’écart en utilisant le matériel disponible à chacune des époques.

Introduction

Dans l’Antiquité, les astronomes n’avaient pas 
observé de mouvement relatif des étoiles, c’est-à-

dire les unes par rapport aux autres. Les constellations, 
figures imaginaires et mythiques restaient immuables 
pour l’œil nu de ces savants. Les étoiles constituaient la 
sphère des fixes.

En 1867, dans le tome II – posthume – de son Astronomie 
populaire, François Arago (directeur de l’Observatoire de 
Paris) nous rappelle que c’est Halley qui, le premier en 
1718 [1], a soupçonné par des calculs de latitude et par 
comparaison avec le catalogue d’Hipparque, les mouve-
ments propres de Sirius, Aldébaran et Arcturus. À la page 
suivante, pour Arcturus, il précise la valeur du mouvement 
propre vers le sud-ouest : µ = 2,25’’ (secondes d’arc) par 
an. C’est à peu près le pouvoir séparateur d’un télescope 
de 10 cm de diamètre. Dans Les étoiles [2], Flammarion 
précise «  qu’en huit cents ans ce déplacement égale le 
diamètre apparent de la lune… ». On rappelle qu’une se-
conde d’arc représente 1/3 600 de degré. 
Pour Arcturus cette valeur de µ a été tout à fait confir-
mée par les mesures modernes de Gaia, extraordinaire 
satellite astrométrique de l’Agence spatiale européenne : 
µ = 2,279 42’’/an (Data Release 2/2018). Ce déplacement 
est relatif aux lointains quasars, repères du fond de ciel.

Observer une étoile « mobile » 
Pour réaliser une observation du mouvement propre 
d’une étoile, deux conditions s’imposent lorsqu’on dis-
pose d’un matériel modeste : choisir une étoile rapide à 
forte valeur de µ et être très (très) patient. 

1975, l’époque des « pellicules »

Étudiant en classe préparatoire et astronome amateur, 
je décidai de tenter l’expérience avec l’étoile la plus 
rapide de toute  : l’étoile de Barnard appelée également 
«  Velox Barnardi  ». Je disposais alors d’une chambre 
photographique équipée d’un objectif de récupération 
de mauvaise qualité (diamètre 77 mm et F/D = 4,5). 
L’image venait s’inscrire sur une pellicule 6×9 HP4 Ilford 

développée à 800 ASA  ; si cela parle encore à certains 
lecteurs. À cette époque il fallait bricoler beaucoup pour 
avoir une monture équatoriale entraînée par une vis sans 
fin, manœuvrée manuellement. Le guidage était assuré 
par une lunette de 55 mm dont le tube était en carton.
Une pose longue de 31 min se déroula l’œil collé à l’ocu-
laire et les doigts tournant l’écrou de la vis tangente. Le 
reste du travail se faisait au laboratoire photo argentique : 
développement de la pellicule et tirage sur papier. Rien à 
voir avec les méthodes actuelles des astrophotographes…

2021, le règne du CCD

La deuxième prise de vue s’effectua dans des conditions 
totalement différentes, avec tous les moyens modernes : 
télescope Meade 305 mm à monture équatoriale Céles-
tron et appareil photo numérique Nikon D330 au foyer, 
équipé d’un réducteur de focale à F/D = 5. Quelque 11 
poses de 20 secondes furent prises soit un total de près 
de 4 minutes. 

Elle bouge !

Les figures  1 et 2 montrent les deux images, ramenées 
au même champ angulaire (cercle bleu) de la taille de la 
pleine Lune, environ. On arrive à repérer les deux posi-
tions différentes de l’étoile, par comparaison.

Entre ces deux points 46 ans se sont écoulés.  D’un point 
à un autre, il y a toute une carrière d’enseignant en phy-
sique-chimie ! Le premier cliché fut réalisé quand je ve-
nais de devenir élève-professeur, aux « Ipes » et le plus 
récent, pour marquer mon départ en retraite. En 1975, 
j’étais loin de penser que j’attendrais aussi longtemps…

Mais revenons à l’astronomie et mesurons le paramètre µ 
de cette étoile. 
On ramène les deux images, 1975 et 2021, à la même 
échelle, puis on les superpose directement ou indirecte-
ment en repérant la position 1975 avec les distances aux 
trois étoiles repères sur l’image 2021. On obtient alors la 
figure 2. Une échelle quantitative, déterminée grâce au 
logiciel Aladin de l’Université de Strasbourg [3], conduit 
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Distance angulaire parcourue : 28 mm /94,5 mm*27,43*60 = 488"
En 46 ans soit 10,6"/an

Ce travail pourrait être transposé en classe en utilisant le 
logiciel Stellarium, chaque élève entrant sa date de nais-
sance t1 et la date du jour t2. Avec le logiciel GeoGebra on 
mesure facilement les distances étoiles repères par rap-
port à Velox. Avec les outils de tracé de cercle on replace 
l’étoile mobile de t1 sur l’image t2. On utilise Aladin pour 
l’échelle. On compare les valeurs de µ obtenues par les 

élèves. Enfin en donnant la distance d (5,955 al) on peut 
calculer la composante tangentielle VT de la vitesse réelle 
de déplacement de Velox, si l’on aime jouer avec les uni-
tés. 
VT = d µ ≈ 90,10 km/s. (avec d en km et µ en ra-
dian). On pourra la comparer avec la vitesse radiale 
VR = ‒110,10 km/s [3].

au résultat de µmesuré = 10,6’’/an ; tout à fait en accord avec les mesures récentes (10,3959’’/an, DR2 GAIA 2018 [3]), 
malgré la mauvaise définition sur l’image argentique très agrandie. C’est avoir « l’incertitude heureuse ».

Fig.1. Région de 66 Ophiuchus le 01/07/1975
À gauche, ancien négatif argentique agrandi 10 fois, pose de 31 min sur HP4 Ilford 800 ASA, chambre photographique D = 77 mm 
F/D = 4,5.
À droite, même région à la même date. Repérage de l’étoile de Barnard, cerclée en blanc, avec Stellarium.

Fig.2. Même région de 66 Oph au télescope de 305 mm, pose de 3 min 40 s Nikon 330 1600 ISO , F/D = 5. Le champ photographié 
est en gris. Par comparaison avec La lune à la même échelle.
On a superposé par triangulation à cette image la position de l’étoile de Barnard du 01/07/1975. L’échelle est déterminée par le 
logiciel Aladin.
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Découverte de Velox

Qui est Barnard (1857-1923) ?

Les images précédentes démontrent que cette étoile est 
difficile à repérer dans le dense fouillis des soleils de la 
Voie lactée. Il fallait être un observateur exceptionnel 
pour réaliser cet exploit à l’aube du XXe siècle. C’est 
Edward E. Barnard, né à Nashville en 1857, qui y par-
vint. Il découvrit 7 comètes entre 1881 et 1887 alors qu’il 
n’était pas encore astronome professionnel. Il est l’un des 
premiers à remarquer les lueurs du « gegenschein ». En 
1887 il est appointé comme astronome à l’observatoire de 
Lick (Californie). Il y examine visuellement les planètes, 
à la grande lunette de 91 cm, et découvre, entre autres, 
le satellite de Jupiter Amalthée (1892) et les traînées ra-
diales sur les anneaux de Saturne (spokes). Un total de 10 
comètes s’ajoute aux précédentes. En 1899, il rejoint le 
tout nouvel observatoire de Yerkes (Wisconsin, lunette de 
102 cm) où il développe son talent pour la photographie 
astronomique et publie son premier atlas de la Voie lactée 
en 1913 puis en 1924. Enfin il travaille sur les nébuleuses 
obscures de notre Galaxie.
C’est en 1916 qu’il repère l’étoile « Velox » (la rapide 
d’Ophiuchus, en latin), sur ses clichés.
Son œuvre lui vaut de nombreuses récompenses inter-
nationales comme les prix Lalande (1892) ou Janssen 
(1900). [4], [5].

L’astronomie en 1900

Barnard a travaillé à la charnière entre deux modes de 
recherches astronomiques. Il fut un grand observateur 
en visuel qui utilisait les plus grandes lunettes astrono-
miques du monde et savait repérer à l’oculaire des astres 
d’éclat ténu, dans le fouillis du ciel. N’avait-il pas aussi 
réussi à voir les nuées gazeuses émises par une nova fraî-
chement découverte ?
Puis la photographie, qu’il maîtrisait depuis sa jeunesse, 
lui permit de passer à l’étude méthodique des clichés ar-
gentiques du ciel, avec le blink microscope par exemple. 
Ce qui l’amena à l’exploit de découvrir Velox dont la 
vitesse apparente 10,4’’/an reste incomparablement plus 
faible que celle d’un astéroïde ou d’une comète qui est de 
quelques secondes d’arc par heure.
Si l’on veut se replonger dans l’astronomie de cette 
époque, je recommande de visiter l’observatoire de Nice. 
Vous verrez les instruments des années 1881-1900 en par-
fait état de fonctionnement, grâce à l’équipe de passion-
nés, dont l’astronome Jean Pierre Rivet : la grande lunette 
de 76 cm et celle de 50 cm de la coupole « Charlois » 
(figure 3). 

D’ailleurs Auguste Charlois, prix Janssen un an avant 
Barnard (1899), eut une trajectoire professionnelle proche 
de celle de Barnard : il découvrit la bagatelle de 99 asté-
roïdes dont 27 en visuel, les autres photographiquement 
entre 1887 et 1904 [6]. Mais, lui, mourut tragiquement, 
assassiné par un jaloux… 
Sur la colline du mont Gros dominant Nice, vous retrou-
verez cet original parfum du passé et profiterez de l’Uni-
versarium, espace moderne, ludique et interactif situé 
sous le plancher de la coupole Bischoffsheim [7].  
N’oublions pas de fêter les 140 ans de l’Observatoire de 
Nice : https://www.oca.eu/fr/visite-guidee-individuels 

Une étoile toujours d’actualité

L’environnement solaire

Dès que Velox fut découverte, on a su mesurer sa paral-
laxe (0,548’’) c’est-à-dire l’angle de son déplacement se-
mi-annuel dû au mouvement de la Terre autour du Soleil. 
Il en a été déduit directement qu’elle était très proche du 
Soleil à l’échelle interstellaire  : 5,96 années-lumière. À 

Fig.3. Intérieur de la coupole Charlois, observatoire de Nice. L’as-
tronome Jean Pierre Rivet présente la lunette de Charlois, toujours 
opérationnelle. Elle fut modifiée en 1960 par remplacement de 
l’objectif de 38 cm par un de 50 cm de diamètre.
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Johannesburg, Robert Innes venait 
de découvrir Proxima Centauri un an 
avant, en 1915 (4,24 al).
Elle fait partie des quelque 339 sys-
tèmes stellaires présents autour du 
Soleil dans un rayon de 10 parsecs 
(32,6 al). Ces systèmes sont consti-
tués de naines rouges, brunes, de 
petites étoiles multiples possédant 
souvent des exoplanètes. Ce dernier 
recensement réalisé par une équipe 
de l’IRAP et de l’UTINAM a été 
publié en 2021 [8], [9]. Voir la carte 
partielle figure 4 [10].

Évolution de la distance au 
Soleil

Le signe négatif de la vitesse radiale 
montre que cette étoile se rapproche 
du Soleil actuellement. Une étude 
des mouvements des étoiles proches 
présentée figure 5 montre que sa dis-
tance au Soleil sera minimale dans 
10 000 ans : 3,8 al. Puis elle s’éloi-
gnera [11].

Découverte d’une exoplanète

En octobre 2018, une équipe interna-
tionale du projet Red Dots, utilisant les 
instruments de l’Observatoire euro-
péen austral (spectrographe HARPS 

de l’ESO entre autres) a montré que 
la vitesse radiale variait périodique-
ment de quelques km/h (par rapport à 
396 360 km/h = 110,10 km/s). L’in-
terprétation proposée est l’existence 
d’une super terre de 3,2 masses ter-
restres orbitant autour de Proxima, 
naine rouge de type spectral M5. Sa 
période de révolution de 233 jours 
montre qu’elle orbite dans une zone 
froide au-delà de la ligne des glaces 
et non dans la zone habitable.
Le responsable de ces recherches, 
l’astronome espagnol Ignasi Ribas, 
indique que les observations conti-
nuent pour confirmer ce résultat, pu-
blié dans la revue Nature [10].

Affaire à suivre…
n
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Fig.4. Les étoiles les plus proches du Soleil. 
Crédit : IEEC/Science-Wave – Guillem Ramisa / ESO im 1837e- 14/11/2018.

Fig.5. Variation des distances au Soleil de quelques étoiles. 
Velox et alpha du Centaure seront à même distance du Soleil dans 10 000 ans. Crédit : 
Wikimedia commons.
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LECTURE POUR LA MARQUISE

L’acquisition et le développement des 
connaissances contre-intuitives en 
sciences

Comment l’enfant se représente-t-il le 
ciel et la Terre ?

Valérie Frède
Éditeur : Cépaduès janvier 2021

Cet ouvrage explore l’apprentissage des connaissances 
en astronomie et présente les travaux en psychologie 

du développement menés dans le domaine par Valérie 
Frède, enseignante-chercheuse à l’université Toulouse 2 
– Jean Jaurès.  

Comme précisé en quatrième de couverture, « l’objectif 
principal est de permettre au lecteur d’acquérir 
ou d’approfondir ses connaissances au sujet de 
développement cognitif de l’enfant dans le domaine de 
l’astronomie et du rôle du savoir naïf dans l’apprentissage 
des concepts scientifiques ».  L’autrice s’est en particulier 
intéressée à l’apprentissage des concepts contre-intuitifs 
et, de fait, l’astronomie ne manque pas de concepts qui se 

heurtent à notre intuition ou à nos observations de tous les 
jours : la Terre qui paraît plate, le Soleil qui semble bien 
tourner autour de nous, l’état d’impesanteur qui serait dû 
à l’absence de toute force, etc.

Dans le chapitre 1, Valérie Frède pose les bases des 
deux principaux cadres théoriques sur la construction 
des connaissances scientifiques chez l’enfant. D’une 
part la théorie des modèles mentaux qui postule que 
l’enfant a des préconceptions appelés « savoirs naïfs » à 
partir desquels il élabore une vision cohérente, mais pas 
forcément scientifiquement correcte, du monde. Et d’autre 
part la théorie des savoirs fragmentés qui considère que 
l’enfant ne fait qu’acquérir des connaissances décousues, 
par morceaux, sans qu’il puisse seul et spontanément lier 
ces morceaux les uns aux autres. Ces deux approches 
attribuent en fait des importances différentes à l’intuition 
et à l’apprentissage. 

Dans les chapitres 2 et 3 l’autrice expose plus concrètement 
les manières dont les notions scientifiques sont acquises 
et commente les résultats de tests menés auprès d’élèves 
de tout âge. Le lecteur sera surpris de constater qu’on 
demande à des enfants de répondre à des questions qui 
mettraient dans l’embarras bon nombre d’adultes ! Mais il 
s’agit là de faire un état des lieux des conceptions initiales 
des enfants puis de montrer comment leurs connaissances 
évoluent avec l’éducation.

Une manière d’apporter un éclairage sur les deux cadres 
théoriques, et possiblement de trancher entre les deux, est 
de comparer l’acquisition de savoirs dans des contextes 
culturels très différents. C’est l’objet du chapitre 4. 
Valérie Frède y relate des tests menés en Afrique et discute 
l’influence du contexte culturel sur les représentations 
initiales.

Enfin, dans le chapitre 5, il est question de la difficulté 
de déconstruire les conceptions initiales erronées au 
cours de l’apprentissage. L’autrice propose des pistes 
pour favoriser les changements conceptuels nécessaires 
et aider les élèves à passer à une vision plus réaliste du 
monde.

Ce livre à la fois argumenté théoriquement et illustré 
d’exemples concrets intéressera les (futurs) enseignants 
en sciences, les formateurs, mais aussi les médiateurs et 
astronomes qui interviennent auprès du public scolaire. 
De manière plus générale, il intéressera tous les curieux 
des choses de l’éducation.

Frédéric Pitout.
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EN ROUTE VERS MARS AVEC LE ROMAN 
Nix Olympica

Frédéric Pitout, Observatoire Midi-Pyrénées / Université Toulouse 3 – Paul Sabatier, 
Institut de recherche en astrophysique et planétologie

Flore Dumas, David Locher, Nina Veron, lycée Toulouse-Lautrec, Toulouse

Les élèves ont eu à s’interroger sur la vraisemblance d’un roman de science-fiction 
proche de la réalité d’aujourd’hui (trajectoire, matériel etc.)

Les ouvrages de science-fiction ou d’anticipation font 
souvent appel, plus ou moins explicitement, à des 

notions scientifiques et techniques. C’est ouvertement 
le cas de Nix Olympica que Nicolas Beck, son auteur, 
a voulu comme un roman de vulgarisation scientifique. 
Avec Flore, David et Nina, élèves (en 2020-2021) de 
terminale, première et seconde au lycée Toulouse-Lautrec 
de Toulouse, nous avons lu le livre d’un œil attentif et 
avons pris un malin plaisir à discuter et commenter les 
éléments distillés au cours du récit. Nous en détaillons 
quelques-uns ici.

Avant toute chose, posons brièvement le décor, sans bien 
sûr tout dévoiler ! Nous sommes en août 2037 et une fusée 
décolle de Kourou en Guyane pour lancer Mars 2038, une 
mission habitée vers la planète Mars. C’est le voyage lui-
même qui est relaté dans le livre, sous forme d’un huis 
clos. Pour cela, on lit le journal de bord de l’astronaute 
française (dont on ne connaitra jamais le prénom, si ce n’est 

la première lettre : E.) parmi les cinq qui sont du voyage, 
et les messages automatiques qu’envoie vers la Terre 
Harmony, le super ordinateur de bord doté d’intelligence 
artificielle et de capteurs de toutes sortes, et qui contrôle 
tout à bord du vaisseau (clin d’œil à Hal, l’ordinateur dans 
2001, l’odyssée de l’espace ?). Au cours du récit, il est 
question d’orbite vers Mars, de potentielles menaces de 
tempêtes solaires, d’alimentation, de technologies qui 
nous sont encore inconnues, etc. Et évidemment, tout ne 
se passe pas comme prévu… L’histoire est pour l’auteur 
une occasion d’aborder des connaissances scientifiques 
en astronomie, en géophysique, en biologie, mais aussi 
des questions sociétales. 

La production d’électricité à bord du 
vaisseau

Que ce soit une sonde, une station orbitale ou autre, 
un engin spatial a besoin d’énergie. La production de 
cette énergie se fait le plus souvent par des panneaux 
photovoltaïques; or la première chose qui nous a intrigués 
est le croquis du vaisseau spatial page 29 (Image 2). 

Par comparaison avec la Station spatiale internationale 
(ISS), il nous a semblé que les panneaux solaires étaient 
bien petits, surtout pour un engin censé aller vers Mars et 

Image.1. Couverture du Roman Nix Olympica de Nicolas Beck (Lucca 
éditions).

Image.2. Vaisseau spatial « Mars 2038 » tel qu’il est esquissé 
page 29 (Lucca  éditions).
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donc se retrouver à une distance plus 
éloignée du Soleil. Puisque certaines 
dimensions du vaisseau sont connues, 
nous avons évalué la superficie des 
panneaux et la puissance électrique 
qu’ils peuvent délivrer. Le but 
n’étant pas de montrer la plausibilité 
du dessin mais davantage de nous 
livrer à un petit jeu intellectuel.

Commençons par évaluer la puissance 
surfacique reçue à une distance d 
du Soleil. Notre étoile rayonne une 
puissance totale que l’on appelle 
la luminosité L


et qui vaut environ 

3,83×1026 watts. Cette puissance, 
que l’on suppose se transmettre sans 
atténuation dans l’espace, s’étale 
sur une sphère, dont le Soleil est le 
centre et le rayon la distance d au 
Soleil et dont la surface est 4πd². Il 
vient que la puissance surfacique 
reçue (irradiance) du Soleil à une 
distance d vaut L


/4πd². À une unité 

astronomie (1 ua) et au-dessus de 
l’atmosphère terrestre, nous recevons 
1 366 W/m². Cette valeur est appelée 
historiquement la constante solaire. 

À l’orbite de Mars, avec une distance 
au Soleil de 1,52 ua, l’irradiance 
tombe à 591 W/m², soit moins de 
la moitié. En d’autres termes, si 
un engin comme l’ISS devait se 
retrouver en orbite autour de Mars, il 
faudrait plus que doubler la surface 
de ses panneaux solaires pour obtenir 
la même puissance électrique.

Dans le roman, nous n’avons que 
deux indications sur les dimensions 
du vaisseau (p. 35) : sa longueur 
(24  m) et le diamètre de sa partie 
cylindrique la plus large (4 m). 
Avec la longueur, on peut estimer 
la largeur des panneaux solaires à 
environ 2,6 m. Quant à la longueur 
des panneaux, on l’évalue à environ 
9,7 m en la comparant au diamètre 
du plus grand du corps du vaisseau (à 
droite de l’image 2) et en s’aidant des 
règles de la perspective. 
En utilisant ces dimensions, les 
deux panneaux solaires du vaisseau 

totalisent une surface collectrice 
de lumière de 50,44 m² et peuvent 
donc délivrer, avec un rendement 
que l’on peut supposer de 20 %, 
une puissance de 13,78 kW au 
niveau de la Terre et de seulement 
5,96 kW à l’orbite de Mars. Ces deux 
valeurs sont très faibles  ! À titre de 
comparaison, un radiateur électrique 
domestique nécessite entre 1 et 
2  kW, et les panneaux solaires de 
l’ISS développent jusqu’à 120 kW. 
On voit mal comment une mission 
vers Mars telle qu’elle est décrite, 
avec un super ordinateur à bord, 
du chauffage pour l’équipage et les 
plantations, les transmissions longue 
distance jusqu’à la Terre, etc. pourrait 
consommer significativement moins.

Même en imaginant que d’ici à 
2038 les cellules photovoltaïques 
atteignent le rendement idéal de 
100  %, on n’arrive au mieux qu’à 
une puissance de 29,81 kW au niveau 
de l’orbite de Mars.

Date de départ et 
voyage vers Mars 
Les voyages vers Mars, par souci 
d’économie de temps et d’énergie, 
ne se font qu’autour des oppositions, 
quand la distance Terre-Mars 
approche d’un minimum. Il ne faut 
toutefois pas s’imaginer que le 
trajet se résume à la ligne droite la 
plus courte entre la Terre et Mars  ! 
En effet, la trajectoire du vaisseau, 

comme les orbites de la Terre et 
Mars, est une ellipse. Il faut donc 
s’arranger pour que la portion 
d’ellipse parcourue (et pas forcément 
une demi-ellipse comme mentionné 
dans le roman p. 265) soit la plus 
courte possible, qu’elle intersecte la 
trajectoire de Mars en un point où 
sera effectivement la planète, et avec 
la bonne vitesse d’approche. Pour 
cela, la technique consiste à lancer 
tout objet vers Mars environ 3 mois 
avant l’opposition.
Il se trouve que la date choisie 
par l’auteur est cohérente avec 
la mécanique céleste puisque le 
vaisseau décolle en août 2037, avant 
l’opposition du 19 novembre 2037. 
Nous ferons remarquer au passage 
que si l’on cherche la distance Terre-
Mars minimale, avec Stellarium par 
exemple, on trouve le 11 novembre 
2037. Cette différence entre la date 
d’opposition et la date de distance 
minimale s’explique par le fait que les 
orbites de la Terre et de Mars ne sont 
pas circulaires. L’alignement Soleil-
Terre-Mars ne correspond donc pas 
nécessairement au minimum de la 
distance Terre-Mars.

À titre d’exemple, l’image 3 montre 
la trajectoire suivie par la mission 
Mars 2020 (Perseverance). Au 
moment du lancement, le 30 juillet 
2020, la distance Terre-Mars était de 
105 millions de km et elle a atteint 
un minimum de 62 millions de km 

Image.3. Schéma montrant, en blanc, la trajectoire de Mars 2020 vers Mars avec les 
manœuvres de correction de trajectoire (MCT) ; en bleu, l’orbite de la Terre et ses positions 
au départ et à l’arrivée de la mission ; et en orange, les mêmes informations pour Mars. 
(Adapté de Nasa/JPL.).
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le 10 octobre 2020. Pourtant, Mars 2020 a parcouru 472 
millions de km en 203 jours. Dans le roman, le voyage 
dure 174 jours pour «  plus de 400 millions de km  » 
(p. 10). Nous sommes bien dans les mêmes et bons ordres 
de grandeur.

Un environnement spatial hostile
En plus du vide, des températures extrêmes et de 
l’isolement, une mission habitée dans l’espace doit 
prendre en compte l’activité solaire. L’impact du Soleil 
est mentionné à plusieurs reprises dans l’ouvrage : « les 
réactions thermonucléaires qui ont lieu au cœur du Soleil 
génèrent des radiations ionisantes dont doivent être 
protégés les astronautes. » (p. 265) ; « le voyant d’alerte 
signifiant éruption solaire clignote avec insistance  » 
(p.  361). Sous le vocable «  rayonnements ionisants  » 
on entend les photons énergétiques (extrême UV, X ou 
gamma) et les particules chargées électriquement, dont 
certaines sont relativistes, qui ont tous l’énergie cinétique 
nécessaire pour arracher un ou plusieurs électrons à des 
atomes ou molécules et donc à les ioniser. Évidemment, 
ces rayonnements sont problématiques pour des voyages 
interplanétaires car ils peuvent mettre en danger l’équipage. 
Cela peut aller de la simple brûlure à la détérioration de 
l’ADN et jusqu’à la mort instantanée en cas d’exposition 
à des doses de radiations trop importantes. Pour s’en 
prémunir, la solution évoquée dans le roman est celle 
mise en place dans l’ISS : se confiner dans la partie du 
vaisseau la plus protégée (par du blindage additionnel par 
exemple). Une autre solution serait de générer un champ 
magnétique intense qui créerait un cocon magnétique 
protecteur. 
L’environnement spatial met aussi les astronautes à 
rude épreuve sur le plan psychologique. L’isolement, 
le confinement, la promiscuité sont autant de facteurs à 
risque qui sont évoqués tout au long de l’histoire. Page 
69, l’auteur fait aussi référence à l’overview effect (« effet 
de surplomb » en français) : des astronautes des missions 
Apollo ou ayant séjourné dans l’ISS auraient pris 
conscience de la fragilité de la planète Terre en la voyant 
seule, petite et finalement vulnérable dans l’immensité 
noire du cosmos. 

Vitesse orbitale et vitesse de libération 
à Mars

Page 384, il est écrit que le vaisseau se met en orbite 
circulaire autour de Mars à 200 km d’altitude avec une 
vitesse de 3,3 km/s. Vérifions cette dernière valeur. En 
orbite circulaire autour d’une planète, la force centripète 
v²/(RM+h) que subit un corps est égale à la force de 
pesanteur GMM/(RM+h)², avec v la vitesse de révolution, 
RM et MM le rayon moyen (3  390  km) et la masse 
(6,42×1023  kg) de Mars, G la constate gravitationnelle 

(6,67×10-11 N m2 kg−2) et h l’altitude (ici, 200 km). Cela 
nous donne une vitesse orbitale de 3,58 km/s, qui est 
proche de celle donnée dans le livre, et une période de 
révolution de 105 min, pour «  un peu moins de deux 
heures  » dans le texte. Pour information, la vitesse de 
libération pour s’extraire de l’attraction gravitationnelle 
de Mars est de 5 km/s. 

La vie sur Mars ?

Pages 96 et 97, il est question de fossiles de bactéries 
découverts par des missions ExoMars 4 et 5 en 2027 et 
2029. Faisons un point sur ce que l’on sait actuellement 
sur la surface de Mars. Il y a de l’eau à l’état de glace 
sous la surface, de l’eau liquide a coulé dans un lointain 
passé. Des astromobiles comme Perseverance essaient 
de trouver des vestiges de vie, même microscopiques, 
mais en vain pour le moment. En revanche, la recherche 
de traces de vie nous a amené à nous intéresser à la 
contamination potentielle par des engins de construction 
humaine, et donc à la décontamination de ces engins (voir 
l’entretien avec Delphine Faye, experte décontamination 
au CNES).

Décontamination spatiale, entretien 
avec Delphine Faye

Dans le cadre de ce travail, nous avons rencontré Delphine 
Faye, chimiste de formation et « experte contamination » 
au CNES, afin qu’elle nous en dise plus sur les problèmes 
de (dé)contamination des engins spatiaux.

Pourquoi décontaminer les missions spatiales  comme 
celle vers Mars décrite dans Nix Olympica ?
Delphine Faye  – La raison principale est la protection 
planétaire, c’est-à-dire de ne pas importer d’organismes 
vivants dans des environnements où ils pourraient 
potentiellement proliférer. En d’autres termes, de ne pas 
polluer biologiquement des environnements planétaires. 
Une autre raison, plus pratique, est qu’un des objectifs 
d’une mission comme Perseverance sur Mars par 
exemple est précisément de détecter de possibles traces 
de vie. Il n’est donc pas question qu’elle en emporte avec 
elle ! Un autre aspect de la contamination est le retour 
d’échantillons de planètes, d’astéroïdes ou autre corps. 
Nous devons manipuler ces échantillons avec une grande 
prudence car des organismes potentiellement inconnus 
sur Terre pourraient être présents.

De quels genres d’organisme parle-t-on précisément ?
On craint par-dessus tout les organismes dits 
extrêmophiles, qui peuvent résister à des environnements 
et des conditions extrêmes de température, de pression, de 
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radiation, etc. L’exemple le plus connu est le tardigrade, 
ce petit animal assez commun qui résiste à tout ou 
presque. Mais ce qui nous préoccupe le plus, ce sont 
des microorganismes extrêmophiles, comme les spores 
de bactéries. Les spores de bactéries sont dans un état 
dormant : leur métabolisme est inactif ; elles font partie 
des microorganismes les plus résistants par exemple 
à la chaleur sèche. C’est pourquoi, on s’intéresse plus 
particulièrement aux bactéries capables de sporuler. Les 
spécifications de propreté microbiologique sont données 
en spores de bactérie par m². 

Comment ces organismes peuvent-ils se retrouver sur des 
sondes ou des astromobiles ?
Ils sont apportés par les hommes et les femmes qui 
construisent ces engins ou les instruments qu’ils 
embarquent  ! Pour limiter la contamination, nous 
travaillons dans des salles propres, dites «  blanches  », 
dans lesquelles règne une surpression pour que l’air 
ne puisse aller que vers l’extérieur. L’air est aussi 
constamment filtré pour que le nombre de particules fines 
soit limité dans une classe donnée.  Par exemple, la classe 
ISO 5 signifie qu’il y a moins de 105 particules (poussière 
ou autre) de taille égale ou supérieure à 0,1 μm par m3 
d’air. Malgré toutes ces précautions, il reste toujours des 
microorganismes sur nos instruments ou éléments d’une 
sonde donc il faut désinfecter, voire stériliser.

Comment procède-t-on ?
Nous avons tout un éventail de moyens physiques 
et chimiques à notre disposition. Parmi les moyens 
physiques, citons la chaleur sèche :  l’opération consiste à 
mettre l’engin à stériliser dans une enceinte dans laquelle 
la température monte à une centaine de degrés Celsius 
et l’hygrométrie est proche de zéro. C’est aujourd’hui 
une méthodologie normalisée pour la stérilisation 
des équipements spatiaux. On peut également passer 
l’instrument aux rayons X ou gamma pour détruire 
les microorganismes les plus résistants. On peut aussi 
simplement désinfecter chimiquement à l’aide d’alcools 
(alcool isopropylique, essentiellement) ou d’autres 
produits. En fait, tout dépend du niveau de propreté que 
l’on souhaite atteindre en fonction du type de mission 
que l’on considère. Une sonde qui restera dans le milieu 
interplanétaire n’a pas besoin d’être aussi «  propre  » 
qu’un astromobile qui va se poser sur une planète et qui 
va y chercher des traces de vie. Il existe ainsi 5 catégories 
de missions pour lesquelles les recommandations de 
protection planétaire seront adaptées. Par exemple, la 
catégorie I qui concerne les missions avec un intérêt 
scientifique autre que la recherche de vie ne requiert que 
très peu de précautions ; en revanche, les catégories IV et 
V qui s’appliquent précisément aux missions de recherche 
de vie et au retour d’échantillons sont très contraignantes 

sur la réduction de la charge microbienne et bactérienne 
des surfaces de l’engin avant le lancement.

Autres sujets intéressants

Par manque de place, il nous est difficile d’être exhaustifs 
et de détailler tous les sujets abordés directement ou 
indirectement par Nicolas Beck dans son roman. Nous en 
évoquons ici quelques-uns plus brièvement.

Rétrogradation de Mars. Elle est évoquée et illustrée 
(pages 308-309) et nous avons regardé ce phénomène 
de plus près. Les lecteurs habitués des Cahiers Clairaut 
connaissent par cœur ce mouvement apparent de la 
planète rouge alors nous ne nous appesantirons pas sur le 
sujet. Les autres pourront trouver les explications dans les 
Cahiers Clairaut (n° 127 par exemple).

Antarès. L’héroïne de l’histoire fait un rêve à propos 
de la supergéante rouge de la constellation du Scorpion 
(p. 429). L’occasion de faire le point sur l’évolution 
stellaire, les tailles des étoiles selon leur type et la fin des 
étoiles selon leurs masses. C’est par ailleurs une étoile 
facilement visible à l’œil nu l’été (aux latitudes de la 
France métropolitaine).

Quelle heure est-il dans l’espace ? Tout au long du récit, 
des jours et des heures sont donnés et nous nous sommes 
demandés quel était le système de mesure du temps utilisé 
dans un environnement où il n’y a pas de cycle jour/nuit ? 
Sans que la réponse à notre question soit explicitement 
proposée dans le roman, nous avons encore fait le 
parallèle avec l’ISS. À son bord, c’est le temps universel 
qui prévaut, nous supposons qu’il en va de même à bord 
du vaisseau ainsi que dans les futurs voyages spatiaux.

Esprit critique et complotisme. À de nombreuses reprises 
– notamment pages 135-136, puis de 205 à 207 –, il est 
question de méthode scientifique, d’esprit critique et de 
complotisme. Le CLEA a largement publié sur le sujet 

Image.4. Inspection sous UV de l’instrument PHEBUS pour la 
mission BEPI COLOMBO (Cnes).
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dans son hors-série des Cahiers Clairaut n° 13, nous ne 
nous étalerons donc pas plus que ça mais il est à noter que 
l’auteur a souhaité aborder ces thématiques.
Wernher von Braun. Le père des fusées V2 est évoqué. 
C’est une bonne porte d’entrée pour étudier l’histoire de 
l’ère spatiale et des premières fusées.
Intelligence artificielle. À bord du vaisseau de nos 
protagonistes, le super ordinateur Harmony a accès à 
une foule de paramètres autres que ceux liés au voyage : 
constantes médicales des astronautes, analyse de leurs 
réactions, de leurs émotions et mêmes de leurs rêves  ! 
Ce système particulièrement intrusif relève encore de la 
science-fiction – et heureusement  ! Toutefois, il nous a 
fait réfléchir sur l’intelligence artificielle et les problèmes 
éthiques qu’elle soulève, notamment dans la prise de 
décisions difficiles. 

Conclusion

Finalement, l’auteur Nicolas Beck a bien atteint son but : 
en lisant Nix Olympica, nous nous sommes posé une foule 
de questions à propos de l’astronautique, de l’astronomie, 
de la planétologie, de la biologie, etc. 

Notre but était de détailler certains des points soulevés 
directement ou indirectement par le roman et de nous 
amuser à les approfondir. 
Nous avons réussi à apporter des éléments de réponses à 
certaines de nos questions et avons pu partager le fruit de 
notre travail (voir encart « Valorisation du travail »). 

La grande question que suscite le roman est celle d’une 
potentielle vie passée sur Mars. Là, personne n’a encore 
la réponse…

Valorisation du travail	

Une manière de partager le travail que nous avons effectué, 
outre cet article, a été notre participation au festival annuel 
Exposciences à Toulouse en juin 2020. L’événement, 
organisé par le Collectif interassociatif pour la réalisation 
d’activités scientifiques techniques et internationales 
(Cirasti) d’Occitanie, ayant été totalement dématérialisé 
en raison de la situation sanitaire, Flore, Davis et Nina 
ont eu la chance d’interviewer Nicolas Beck à distance à 
partir du lycée dans le cadre du podcast Pose ta science 
de la radio Campus FM (https://www.mixcloud.com/
CampusFM/pts-04/). Ils ont ensuite présenté nos résultats 
en s’appuyant sur un diaporama qu’ils ont commenté en 
ligne pendant le festival
(https://www.youtube.com/watch?v=1rCb4z5zrWE vers 
36:00).
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Image.5. Interview de Nicolas Beck à distance avec l’équipe du Cirasti Occitanie et de RadioCampus FM.
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Exposés accessibles à tous, ateliers pratiques et 
observations du ciel : toutes les activités sont 

encadrées par des astronomes professionnels et des 
animateurs chevronnés.

Renseignements et vidéo sur :
http://clea-astro.eu/aLaUne/EcolesdEtedAstronomie

Le site web

Une information toujours actualisée

http://www.clea-astro.eu 

École d’Été d’Astronomie



Directeur de la Publication : Frédéric Pitout	
Rédacteur de publication : Christian Larcher	
Imprimerie Grapho12,  12200 Villefranche de Rouergue

Revue trimestrielle: numéro 177 printemps 2022 
 Prix au numéro : 9 €

Premier dépôt légal : 1er trimestre 1979
Numéro CPPAP : 0315 G 89368

LES
CAHIERS CLAIRAUT

Publiés quatre fois par an, aux 
équinoxes et aux solstices, les Cahiers 
Clairaut offrent des rubriques très 
variées :
Articles de fond
Réflexions
Reportages
Textes (extraits, citations, analyses)
Pédagogie de la maternelle au
supérieur
TP et exercices
Curiosités
Histoire de l’astronomie
Réalisations d’instruments et de ma-
quettes
Observations
Informatique
Les Potins de la Voie Lactée

COMMENT
NOUS JOINDRE ?

Informations générales :
	 http://www.clea-astro.eu

Siège social :
	 CLEA
	 Case courrier 7018
	 Université Paris Diderot - Paris 7
	 Bâtiment Sophie Germain
	 IREM de Paris
	 8, place Aurélie Nemours
	 75205 Paris cedex 13

École d’Été d’Astronomie :
		  daniele-imbault@laposte.net

Cahiers Clairaut :
	 christianlarcher3@gmail.com

Ventes des productions : 
		  http://ventes.clea-astro.eu/

Site web :
	 contact@clea-astro.eu

Adhésion / Abonnement :
Adhésion CLEA pour 2022 :	 10 €
Abonnement CC pour 2022 :	 30 €
Adhésion + abonnement CC :	 35 €
Adhésion + abonnement CC de soutien
(papier et numérique) pour 2022 :	 40 €

Les adhésions, abonnements et achats 
peuvent se faire directement en ligne sur le 

site : http://ventes.clea-astro.eu/


